AD-AV 262

\ri] “i"nl

| g ia d”.f’éu.«- 'nﬂm“mm&»ﬂwrmwmm wnw%mz

2; ,

1‘ DYNAMIC ARCHITECTURE COMPUTER

zs

l-‘:

| THESIS BT
é Patrick E. Price » ‘

1 ' CCAB I'I/GE/E\JG/BQD AO

me mquxu‘mﬁm“ DS RTAT)

; sy pehliy crlsces amd sxbyg 29

fandhetime S molimited,

{ 15is documiaal bacs kesa «wmm‘) ,
> l' n‘b““-"“‘m

DEPARTMENT OF‘THE AIR FORCE
AIR UNIVERSITY

A!‘? i'ORCE lNaTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

ey . o -

EV A T BT B T N e

AFIT/GE/ENG/89D-40

DYNAMIC ARCHITECTURE COMPUTER

THESIS

Patrick E. Price

AFIT/GE/ENG/89D-40

pTIC
FLECTE

£

Approved for public release; distribution unlimited

AFIT/GE/ENG/89D-40

DYNAMIC ARCHITECTURE COMPUTER

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Tecnology
Air University
In Partial Fulfillment of

Master of Science in Electrical Engineering

l Accession For

NTIS GRAZT
DTIC TaB
Unannounceqd

Justification____fz____

By.
| Distribution/
Avai;ability CJ&ES
lAvail ahd/oi
Dist Speclal
l

December 1988 Vq:({

Patrick E. Price, B.S.

Approved for public release; distribution unlimited

——

Preface

The purpose of this thesis was to design a computer
that could process a large variety of calculations with a
minimum of hardware. This constraint requires a computer
that can change its structure to match the demands of the
problem currently being calculated. Computer image
generation was selected as an example problem. The
processing requirements of real-time computer image
generation require calculation of very large real numbers as
well as very small logical variables.

The results demonstrate that, in a best case
analysis, a dynamic architecture computer can demonstrate an
improvement in processing speed over conventional single
instruction, single data computers. ‘;jff)::

In preparing this thesis, I extend my gratitude to
several people for their contributions. First and foremost,
I thank my advisor, Dr. Thomas C. Hartrum, for his guidance
and support. Also, I t. ... Captain Nathaniel Davis IV and
Captain Bruce George for .eir expertise and assistance.
Finally, 1 thank Ms. Deborah Martin for her help in
tabulating the statistics.

Patrick E. Price

ii

Table of Contents

Preface ..iveeeeccesencceecescsosssnsnssscssocncnscss ii
List O0f Figures .civevesceeeeectossesnosassncscannse v
List 0of Tables teieeveceecencetseasosnsscsseansnsness vi
I. Introduction ..eiiiiieierenrineeecesenennns 1

Background ..csceeeceecscsnesescscassosonnns 1
Problem ® ® ® & & & & & 2 5 & S SO P O S P PG G L 906 e s e e 3
Scope ® @ & 8 © 5 0 0 ¥ 6 0 5 8 S O S O S 9GS O 00N e DN 4
Approach ® % & 6 & & O 2 * 08 000 ST S 9 S e S PV OO 3 e a 4
Thesis Organization ...eeeieecencecences 5

7

7

II. Literature RevViewWw ...ecvseestnescoscencnses

Introduction tieeeeieeeectncacoscoscnses

EStrin tieeeeesveeessesossesesonsosannses 9
Kartashev and Kartashev ceceoeeecccscoses 12
Dimond and KiNg seeveeeencessncancccnnas 38
Rauscher and Agrawala ..sceevececccecnss 29
Fuchs and Johnson ..ceeeciiecncecocsannas 40

III. Computer Generated Imagery Software 42
Computer Generated IMEEES «eeveesscccasn 42
Scene Generation Software ...ceeeecececs 44
Required Data .eeveeecscenoconscennennna 51
Software Analysis ..ieeeeecsscosssenscans 54
Iv. Dynamic Architecture Computer Design 68
Dynamic Computer Features ..c..eeeceeeceses 77
Dynamic Computer Operationeeceeeeen 86
Summary ® & 6 & 9 0 ¢ 0 5 ¢ O PG e s P G S 90 e e O s Ve e e s> 92
V. Analysis and Conclusions ...veeeeseocesoses 93
Analysis ® 6 8 9 0 ¢ 9 0 9 & o8 &% S P G 90 S OB PSS 00 e s 93

CONClUSIONS teeeeeeecencessnossosescsnnsse 101
Recommendations for Further Research ... 103

iii

References

Bibliography ® 6 6 6 6 0 0 ¢ 0 0 T SO L O S ES S SN EE P SN0

Appendix A:
Appendix B:

Appendix C:
Appendix D:

® 6 4 8 2 & 8 ¢ P S0 P OO E OO L e E N OOV

Module Calling Summary ...ceeesee
Module Descriptions .eveecess . e

Collected Data on Variables

Collected Data on Operations ...

iv

109
111
112
125
136
208

]
o
[
g]
1]

(6 JF - N N - A U SR N S I8
AN BR NN N

List of Figures

Page
Keyword Search Strategy ..ccececescassvesess 8
Flowchart for Constructing a Program Graph . 31
Data Base Development System Diagram 45
Coordinate Set Definition ceeese coae 48
Format of Floating Point Variables 76
Possible Configurations ...eeeececceccecnace 77
Instruction Format .e.ieeeeecccosccccncannnns 84
Carry-In/Carry-Out Structure ceoee 85
Dynamic Architecture Computercceo0c.. 87

Percent of Execution Time Required by
Dynamic Computercccecesess ceeaenss . 100

v

List of Tables

=
sy
o
-
[
F:
[V
(1)

3-1 Valid Variable Type and Size Combinations .. 58
3-2 Summary of Variable Data sieeeveeevecoccnns . 60
3-3 Total Variable Data csoveeeesececnoans e 61
3-4 Itemization of Variable Operatlons Data ce e 65
3-5 Summary of Variable Operations Data 65
3-6 Summary of Other Operations Data Cerees 66
4-1 Relative Occurances by Variable Type 73
4-2 SEL 32/70 Instruction Repertoire e 75
4-3 Summary of Variable Addressing Requ1rements 83
5-1 Summary of Processors and Operations 98
5-2 Summary of Configurations and Operations ... 98
5-3 Detailed Execution Analysis tessssana 98
vi

DYNAMIC ARCHITECTURE COMPUTER

I. Introduction

Background

Digital computers may be designed and built using
discrete components, individual integrated circuits or
microcomputer chips. A variation of the microcomputer chip
is the bit-slice chip. Each bit-slice chip contains all of
the circuits and components that would be obtained by
slicing through the processing portion of a computer. Thus,
each slice could become a small stand-alone computer if
properly connected to memory and other peripheral devices.
Large computers may be built by using a number of these
slices connected together. It is also possible to use these
bit-slice chips to build a computer that is very fast for a

specific application.

This is a desirable concept because general purpose
computers are not fast enough for certain applications. One
example of particular interest is Computer Generated Imagery
(CGI). CGI requires a data base of digitized descriptions

of three-dimensional features. By careful manipulation of

these descriptions, a realistic visual scene is created that
can be viewed on a television picture tube. This requires a
substantial number of calculations in order to create the
proper perspective and size of each object and to convert
each object to individual picture elements for display on a
two dimensional screen. Furthermore, 1f the illusion of
motion is to be created, these calculations must bte done zt

least 30 times per second.

A general purpose computer is designed to handle a
variety cf tasks equally well. Applications like CGI
require that the hardware be highly tuned for several
specific types of data manipulations. Therefore, the
computation of CGI algorithms is generally done in special
purpose processors. The CGI algorithms are implemented
directly in the hardware of these special purpose
processors. If the CGI algorithms change for any reason, it
is not possible to change the special purpose processor

without a redesign of the hardware.

Currently, there is some interest in developing
general purpose digital computers that can vary their
architccture dynamically. That is, they can change from a
computer that handles large, high precision numbers into a
computer that handles smaller, less precise numbers. When
this computer is processing smaller numbers, it would be

able to do several calculations in parallel.

Bit-slice chips make ideal building blocks for a
dynamic architecture computer, and CGI is a very good
application for testing such a design. A general purpose
dynamic architecture computer would be very complex because
it would have to be able to assume all possible combinations
of connections. A dynamic architecture computer designed to
perform CGI could be simplified to perform only those

operations essential to CGI.

Problem

The problem is to design a dynamic architecture
computer for the specific purpose of processing Computer
Generated Imagery (CGI) algorithms and to demonstrate that a
savings in time can be achieved by using this computer

instead of a general purpose computer of fixed architecture.

Scope

This effort includes a design for the computer in
sufficient detail to make accurate timing calculations. For
purposes of this effort, the design will not be taken to the
level that an actual machine could be constructed, although
there will be recommendations for implementing a prototype
and data for a prototype test. Whenever possible, the
design will be such that it could be extended to a general

purpose computer if desired as a follow-on effort.

Approach

The general procedure followed during the conduct of

this study was as follows:

Literature Review. The literature review

concentrated on researching the work already done in the
area of dynamic computer architecture. The review assured
that this study did not duplicate previous studies and

provided the background information for this study.

Analysis of CGI. This phase concentrated on

analyzing a software emulation of some typical CGI
hardware. The results of this analysis consisted of details
of required instruction sets and the size and precision of

the variables being calculated.

Design of Architecture. The result of this phase was

the design of a dynamic architecture computer based on the
information obtained from the analysis outlined in the steps

above.

Analysis of Results. This concluding phase

determined whether or not the resulting design demonstrated
an improvement in speed over a fixed architecture computer

performing the same task.

Thesis Organization

The organization of this thesis follows the steps
outlined in the approach. Chapter One contains the
background and other introductory material. Chapter Two
contains a review of the pertinent literature. Chapter

Three discusses the analysis of the Computer Generated

Imagery (CGI) software including the organization and
operation of the actual software, the type of data desired
as a result of the analysis, and the steps performed in
doing the analysis. Chapter Four details the design of the

architecture. Chapter Five contains the analysis of the

results.

II. Literature Review

Introduction

A literature review was undertaken as the first step
in this research. The purpose of the review was to find
those articles published on the general topic of dynamic
computer architecture. The results and a discussion of the

most important items found are given below.

The primary literature search into dynamic computer
architectures was performed using the Lockheed automated
data retrieval system to do a keyword search on the
COMPENDEX (Corporate Engineering Index Inc.) file. Also at
this time, a search was performed on both INSPEC files and
the NITS file using the same search strategy. Of the
abstracts obtained in this manner, only a few were directly
related to dynamic computer architecture. The keyword

search strategy is given by Figure 2-1.

Each relevant article is discussed below. The

discussions are arranged chronologically by author.

ALTERABLE

ADAPTABLE |

DYNAMIC

B8IT

SLICE

COMPUTER ARCHITECTURE |

SELECTED
ABSTRACT

e

Figure 2-1. Keyword Search Strategy
8

Estrin

The first paper chronologically is "Organization of
Computer Systems: The Fixed Plus Variable Structure
Computer." This article describes a proposed computer
system that could be adapted to specific problems. This
computer system would be composed of two parts. The first
part would be fixed in its architecture. The fixed part
would actually be an cff the shelf general purpose

computer.[Ref 2:34]

The second part of this system would be variable both
in terms of the individual components used and in the
interconnection of the components. Each of these separate
components could be any of the fundamental elements of a
regular computer such as flip-flops or shift registers. 1In
addition to the individual elements, there would be a
library of frequently used substructures that are hardwired
combinations of individual elements. Each of the individual
elements and substructures could be connected together in a
variety of ways within the variable portion of the

system. [Ref 2:34-35]

The significance of this paper is that it is the
first to mention variable connections between elementary
circuits within a computer. The computer system described
in this paper is apparently not dynamic, but the basic ideas

for a variable architecture computer are expressed.

The next paper reviewed was "Parallel Processing in a
Restructurable Computer System." This article describes the
Fixed Plus Variable computer system as it was being built at

UCLA.[Ref 3:747-755]

In addition to the fixed and variable portions
described above, a supervisory control unit has been added
to the design. This control unit is built in several levels
where each level exercises control over a certain type of
operation. For instance, the lowest level executes the
lowest level single action such as arithmetic and logical
operations. The next higher level executes the elementary
functions such as complex arithmetic and matrix operations.
This level uses all of the operations defined at the lowest

level in order to perform its functions.[Ref 3:749-750]

10

Intermediate levels may exist which would execute
higher level functions. Each level defines its own
functions using the functions defined at all levels beneath

it.[Ref 3:750]

The highest level of control is the supervisory
level. This level performs the following special functions:

1. Controls execution of all computations in the
fixed and variable portions

2. Coordinates the information exchange between the
fixed and variable portions

3. Performs interlocking functions necessary for
parallel processing

[Ref 3:750]

In addition, the control units on each level have the
following functions:

1. Sequence through each state required to perform
the necessary operation.

2. For each state, perform the necessary commands,
using the functions defined at the lower levels.

3. Generate the next sequential state.

(Ref 3:750-751]

11

Kartashev and Kartashev

The most important articles found were a series of
articles written by Steven I. Kartashev and 3Svetlana P.

Kartashev. Over a period of several months they have

published the details of their design for a dynamic computer
architecture that has many of the attribtutes that this
thesis is trying to achieve. The content of some of the
articles overlaps so only the ones required for an all
inclusive design are included here. The first of these
articles is "A Powerful LSI Metacomputer System with Dynamic
Architecture for Simulation of Complex Problems."[Ref
5:483%-488] It discusses a dynamic computer architecture
that could be used to speed up the calculations for
distributing electric power from a grid of power generating

plants.[Ref 5:488]

The dynamic architecture computer described in this
article is composed of a number of "dynamic computer
groups." Each group is identical to every other group in
that they all contain the same elements. Each group can
function independently or in conjunction with other groups

to form a larger group.[Ref 5:483-484]

12

In addition to each group being identical, each
individual group contains, within itself, & number of
identical sets of elements. Each of thes= elements consists
of a processor unit, a memory unit and an input/output
unit. Each element can therefore be thought of as a simple
computer. These elements can also function independently or
in conjunction with other elements in its own group. The
elements within a group are connected together so the data
can oe passed either left and right between fthe elements or
only between the memory and its associated processing unit.
Each group has a monitoring unit, called & V monitor, which
controls the interconnections between the individuzal

elements.[Ref 5:483-486]

The simple computers in this case are all 16 bits
wide and have a 16 bit wide memory. These simple computers
may be dynamically linked together through the connecting
units to form wider computers in multiples of 16 bits. Each
computer can process data concurrently with the computers

formed by the other elements.[Ref 5:485-486]

Obviously an arrangement such as this could make the

memory access quite complicated. This design solves some of

the problems by making the memory access both serial and

13

parallel. When two elements are connected together to form
one 32 bit computer, each 16 bit portion accesses the same
memory location in its 16 bit memory. The connecting unit
described above is in the no pass mode so that the data goes

from the memory to its associated processor unit.[Ref 5:484]

Instructions, however, are stored in consecutive
locations within one memory unit. When an instruction is
obtained from a location in one of the memory units, it is
passed either left or right through the connecting unit to
all of the aflecied processing units. A single program may
be stored in more than one memory unit. Executicn control
is passed to the instruction strear .2 next memory by a

special jump instruction.[Ref 5:485]

The article "Designing LSI Modular Computers and
Systems" [Ref 6:1-6] elaborates on this basic design by
discussing the V monitor in further detail, by discussing
the principles of design of the operating system and by

introducing the concept of program universality.{Ref 6:1]
The V monitor is the control unit for each dynamic

computer group. It controls the transition between states

and resolves conflicts of requests for new configurations by

14

the programs. Task execution within each element is
concluded by a STOP instruction which informs the monitor
that that resource is now free and available for

reassignment.[Ref 6:5-7]

The operating system is composed of three basic
programs. The assignment portion is the first to see the
user program. It breaks the user program into segments of
known bit size, organizes these segments into tasks of
common bit size, and then assigns the hardware resources
needed to run each task. The second portiocn <f the
operating system is the local monitor which runs in the V
monitor of each group. Its functions have already been
described. The third portion is the central monitor program

which runs in the system's control computer.[Ref 6:8-9]

The central monitor program manages the resources of
the entire system. It acts much like the local monitor does
only on a system wide basis. Its tasks are to prioritize
all requests for transition of the entire system, keep track
of and specify each group's ability to transition into new
groups, and it interrupts lower priority programs and
obtains the necessary resources for higher priority

programs.[Ref 6:9]

15

The third important item in this article is the
introduction of the concept of program universality. This
concept is essential to the capability to perform multiple
architecture switches. The principal concepts are:

(1) Instructions store no codes or constants which

change their meanings when the same program is

computed by different size computers

(2) Instruction size is unique and independent of

computer size

(3) Addresses in the instruction fields remain

unchanged when moving programs from computer to

computer

[Ref 6:9]

The functioning of the operating system is elaborated
further in the article "Dynamic Architectures: Problems and
Solutions."[Ref 7:26-40] Any operating system for dynamic
architectures must have two additional functions:

(1)It must construct a diagram of the computer sizes

needed

(2)It must flowchart the architectural states and

assign a priority for the transitions
The operating system, as conceived in this article, contains

additional subsytems to accomplish this task. Previous

16

articles divided the monitor system into three parts. This
article combines the functions of the monitor system into

one subsystem.[Ref 7:35]

The basic tasks of the assignment subsystem were
described above. That is, it takes the source code and
organizes it into specific bit sized pieces and inserts the
transition instructions. This process is done in four steps
as follows:

1. Break the source statements into nodes where the
beginning and end of each node occurs at a control
statement.

2. Find the maximum bit size of all computations.
Algorithms are given in this article to find these maximums.

3. Use the maximum bit size of the computations in
the node to establish the maximum size of the computer
needed to execute that node.

4., A two axis diagram of bit sizes is built. The
horizontal axis represents the number of graph nodes and the
vertical axis represents the computer bit size for each

node.[Ref 7:35-38]

The next article in the series, "LSI Modular

Computers, Systems, and Networks" [Ref 8:7-15] is an

17

introduction to a special issue of "Computer" magazine
published by IEEE. The importance of this article to this
discussion is the definition of the terms Static
Architecture, Dynamic Architecture, and Reconfigurable

Architecture. [Ref 8:7-9]

Static architecture allows no software controlled
variations. Reconfigurable architecture allows partially
software controlled variations in the module's
interconnections. Dynamic architecture allows complete

software controlled reconfiguration.[Ref 8:9]

"Software Problems for Dynamic Architectures:
Adaptive Assignment of Hardware Resources" [Ref 9:775-780]
expands the discussion of functions of the assignment
subsystem. The four steps mentioned earlier as being done
by the assignment subsystem are now looked at from a
different perspective. These tasks are divided into three
topics and discussed in detail., These three topics are
construction of a program graph, diagram of hardware
resources, and assignment of the DC group resource among

programs. [Ref 9:775]

18

The basic unit of construction of a program graph is
the node. The construction of a node was discussed
previously as being all of the statements between two
consecutive control points. Control points are statements
where program execution forks or Joins. The maxim m bit
size of each node is calculated by the following procedure:

1. Each variable is analyzed to determine its maximum

bit size

2. Each statement is analyzed to determine the

maximum bit size required for its calculations

3. Each calculation is analyzed to determine tne

maximum intermediate bit size required. The maximum

intermediate bit size is that size required to
contain the intermediate results.
Formulas are given in the article for determining the
maximum bit size and the maximum intermediate bit size for

various arithmetic expressions.[Ref $:775-777]

Once the program graph is constructed, the diagram of
hardware resources can be made. This 1is a four step process
which uses the data derived by the procedures described
above. The first step is to construct the bit size
diagram. The horizontal axis of this diagram represents the

nodes of the program graph. The vertical axis shows the two

19

bit size parameters, the maximum bit size and the maximum

intermediate bit size.[Ref 9:777]

The next step is to adjust the bit size diagram to
eliminate excessive changes in computer sizes. The result
of this is a computer size diagram that is ordered in the

sequence of computer sizes required.([Ref 9:777]

The third step is to determine the time required to
execute each task in its given computer size. This can be
done by breaking down each statement into its machine code
equivalent. The number of clock periods for each machine
instruction is based on the computer size and memory access
speed. This value is multiplied by the number of times it
is iterated to find the total time for that instruction. The
total time for all instructions in that node are added

together to get the total time for that node.[Ref 9:777]

The fourth step is to construct the hardware resource
diagram for the entire program. This is called the
P-resource diagram. It is a graph where the time of
functioning of each task is plotted on the horizontal axis.
The upper portion of the vertical axis is plotted with the
computer sizes. The lower portion is plotted with the

dimensions of the data arrays.[Ref 9:777-778]

20

The third topic of this article is the assignment of
the DC group resources among the programs. This is
accomplished by combining all the P-resource diagrams
(output from stage 4 of the hardware resource diagram) into
Computational Element (CE) resource diagrams and the Memory

Element (ME) resource diagrams.[Ref 9:778,780]

The CE resource diagram plots the maximum bit size on
the vertical axis and the time for executing each task is
mapped along the horizontal axis. The construction of this
diagram is done in accordance with the program priorities.
That is, the high priority program segments are plotted
first. The result is a diagram that maps all of the
computer resource requirements for the programs to be

executed.[Ref 9:778-779]

The ME resource diagram is built using the memory
size portions of all P-resource diagrams. All data arrays
are assigned first because they must use the same location
in all memories. The remaining spaces are filled in with
programs and program segments since execution can Jjump from
memory to memory. The result is a graphic picture of the
memory space required to execute the subject programs.[Ref

9:779-780]

21

The concept of dynamic architecture is extended to
pipeline systems in the article "Adaptable Pipeline System
with Dynamic Architecture."[Ref 10:222-230]) This article
proposes a design for a pipeline computer system that uses
the same Dynamic Computer (DC) groups that were presented in
previous articles. Each stage of the pipeline is made from
a single DC-group. In addition, each stage has its own
register set for storage of temporary results.[Ref

10:222,225]

This dynamic pipeline architecture solves some of the
problems of ordinary pipeline architectures by allowing the
instruction to exit the pipeline when execution is completed
even though more stages remain in the pipeline. Also, each
stage has a variable execution time for each instruction

being executed.[Ref 10:224]

The next paper in this series, "Adaptation Properties
for Dynamic Architectures," [Ref 13:543-556] introduces a
concept called adaptation parameters. These parameters
allow the user program to be evaluated against alternative
architectures. These evaluations will select the optimum
architecture for each program. Equations and examples for

each calculation are given in the article.[Ref 13:543-556]

22

The first of these parameters is the Speed of Bit
size Adaptation (SBA). This parameter is the time that it
takes the computer to switch from one architectural state to
another. This number is a factor of the switching
configuration and the technoclogy used to implement the

switch.[Ref 13:544-545]

The second parameter is the Precision of Bit size
Adaptation (PBA). This parameter represents the time lost
in executing instructions in a machine size too large for
that particular instruction. Each instruction is likely to
require a different size computer. Therefore, in order to
minimize the switches between states, instructions are
grouped into tasks of similar computer length and these
tasks are then executed in a fixed computer size. However,
there will still be instances where an instruction, within a
given task, could have been executed in a smaller computer,
The difference in time between its execution in its assigned
task and the time it would have taken to execute in a
smaller machine is a loss of efficiency. The sum of all of

these losses throughout a program is the PBA.[Ref 13:545]

The next parameter is called the Resource Utilization

Factor (RUF). This parameter is computed for each state

23

that the system is in during the execution of a program. In
each state, the system assumes a number of computer sizes
that execute concurrent instruction streams. When a task is
executed in this state, some of the processes finish before

others and the resources of that path must be idle. This

idle time is used to calculate the RUF.[Ref 13:545-546])

In addition to dynamic architecture, it is also
conceivable that instruction sets can be dynamically
changed. The difference in execution time of one
instruction set over another for the same program is a
parameter called Speed-up on Program Adaptation (SPA).
Related to this is a parameter that computes the gain in
speed obtained by implementing an often performed
instruction stream into a single executable instruction.
This parameter is called the Speed-up by Instruction

Adaptation (SIA).[Ref 13:546-547]

There is a parameter that measures the efficiency
with which a dynamic architecture adapts to array
processing. This factor is called the Array Adaptation of
Equipment (AAE). It is the percentage of equipment left
over when a computer size is selected that is larger than
the operands. It is similar to the factor PBA but it is

specifically for array structures.[Ref 13:547-548]

24

There are numerous factors which must be considered
in adapting a dynamic architecture to a pipeline
configuration:

Adaptation to parallel streams

Adaptation on operation sequences

Adaptation on the number of pipeline stages

Adaptation to operation time in each stage

Adaptation on conditional branch
These factors are also described in this article but since
they deal with pipeline architecture, there is no need to

elaborate on them here.[Ref 13:548-550]

The final parameter is the time that it takes to
adapt a program so that it may be executed. This is called
the Time of Program Adaptation (TPA). The ideal situation
is a TPA of zero or no time required to adapt the program.
This occurs with all programs constructed under the rules of
program universality. Program universality was presented in
detail above. Its important points are:

1) all instrur~tion codes have the same meaning

regardless of the computer size

2) unique instruction size

3) serial consecutive storage of instructions in

memory

25

4) parallel storage of data in memories.
However, complete program universality is not always
practical. Therefore, a certain amount of time is usually
required in order to adapt a given program to a new

architecture. This time is called the TPA.[Ref 13:550]

This article also departs from the previously defined
operating system by adding an additional system. The
adaptation system is now the first system to process the
user's program. Its job is to find the optimum instruction
set for executing this program. The other two portions of
the operating system, the assignment and the monitor, remain

the same.[Ref 13:550]

The article "A Multicomputer System With Dynamic
Architecture” [Ref 11:704-721] includes more detail about
the function of the monitor system. Specifically, it deals
with those things which must be done in performing the
switch from one architectural state to another. The
previous articles divided the monitor system into sections
based on where in the computer system each portion was
located (i.e. local monitor, V-monitor, etc.). This article
discusses the monitor system in functional areas. They are:

1) Task synchronization

26

2) Priority analysis
3) Storage of variable control codes
4) Organization of the architectural switch to a new

state.[Ref 11:706,715]

The first two functions are self explanatory. They
are performed by the V-monitor during execution of programs
in the dynamic computer. These two processes handle the
reallocation of resources in real-time. Task
synchronization determines when the resources of a
particular CE are free and ready to be transitioned.
Priority analysis is required in order to determine which
tasks or programs will get the available resources for its

processing.[Ref 11:715]

Storage of variable control codes is done by the
Central Monitor each time a new DC group is formed. These
variables are written into each individual CE's memory in
order to switch the architecture to a new state. The
control codes for all CE's for all possible configurations
are stored in one of the memories where they can be accessed
by the ¢ propriate V-monitors. These codes are used by the
system to denote the current configuration and so each CE

knows how it is supposed to be configured.[Ref 11:715-7171]

27

The next article "Adaptable Architectures for
Supersystems" refines the details of the monitor system. Its
discussion of the monitor system divides the function into
four different actions. They are:

1)Checking the readiness of the resources requested
for reconfiguration

2)Task synchronization

3)Priority analysis

4)Architectural reconfiguration.[Ref 15:34-35]

The total monitor system operation as described in
this article is not dirferent from the previously presented
concepts. However, there are more details given on the

implementation of these functions.[Ref 15:34-35]

The final article of interest by these authors is
"Distribution of Programs for a System with Dynamic
Architecture." It is important mainly because of its
detailed presentation of an algorithm for constructing a

program graph.[Ref 12:490-492]
A program graph consists of a series of nodes,

connected by execution flow lines. Nodes can be simple or

complex and may also be iterative or non-iterative. Simple

28

nodes have only one exit point for control to pass to the
next node. Complex nodes contain some type of decision
statement and therefore have more than one exit point. For
a complex node, the particular node to which control passes
next is determined by some type of decision statement
internal to that node. All decision statements are

considered control statements.[Ref 12:489]

Iterative nodes are executed some number of times
specified by a parameter called Z. Non-iterative nodes are
executed only once in the course of execution of that

particular program path.[Ref 12:490]

An important part of the algorithm which does not
become a part of the graph is the node cross reference
table. This is a two column table that is used to keep
track of which nodes need to be connected at a later time to
other nodes. Column one contains a pointer to the control
statements. Column two contains pointers to all of the
statements being referenced by the control statement.[Ref

12:490]

The algorithm divides all of the statements in a

user's program into five types as follows:

29

Type 1: A non-control statement that is not
referenced by any other statement.

Type 2: A statement referenced by another control
statement

Type 3: All control statements except the DO

statement

Type 4: The DO statement

Type 5: The DO reference statement or the DO
object.[Ref 12:490-492]

This algorithm is illustrated by the flowchart in
Figure 2-2., The result of using this algorithm on a program
is a flow graph that shows all of the executable program
statements and all of th~ possible execution paths.[Ref

12:491]

Type 1 statements become part of the previous node
unless the previous node contains a control statement. If
the preceding node is a control statement node, then the
type 1 statement in question is made into a new separate
node. Consecutive type 1 statements are collected together

by the algorithm into a single simple node.[Ref 12:490]

30

Ciey 2l
ydoig woiboid b buyonysuo) 104 40YoMol4 g2 -2 aInbi4

194 1]

93 98¢
oN

spon

i sieweinig

sweg

esop

» dog
on

4 duig

N

uswe 0ig

& 1esu0)

shosanay

sz doig

SPON MmON

¢ doig

b do g

oN

81 doyg

&4 peove.ie ey

epoN meN

wepon LIL 17}
LI %Y *ippdn
11 0 3 dog
oN
sponN poulijasy
oi9indeg sjuowmnig uc)
srdoig 2 doig
1
LI LI T3 SPON JuBiIND
°a 0 oN LTI 7Y
¢ fnig 33 dug
N
epoN o}
LTI L) [T
°
N oq Ae
peouessjoy 13 doig
& Jusweinis 03 ¢us i uewess
oQ oON weInd
vl o%g o g
(LYY e
opoN uswe e i spoN
Adu g *PoN moN obuny oN Kydwy
St dag 31 doig 11 dog 0l snig

.] £ dos
4 womenig
oo " e

oN

¢ doi5

¢ fng

Wowe 85

ixon

3 s

oponN
04

| dug

31

Type 2 statements are the destination of one or more
control statements. They automatically become a separate
node. If the control node that references the type 2
statement has already been assigned to a node, then the

connecting link can be made. However, the information must

still be stored in the event that another control statement,
that has not yet been encountered, also refers to that
statement. If no control statements have been encountered
that refer to the type 2 statement in question, then that
information is also stored so that the link can be made
later. Type 2 statements also form simple nodes.[Ref

12:490]

Type 3 statements are also assigned to a separate
node. The node cross reference table is updated to reflect
any links that can now be made with statements previously
assigned to nodes and also with references to statements not
yet assigned to any nodes. Note that a type 3 statement can
also be a type 2 statement because it can be the destination
of another control statement. Since all type 3 statements
automatically become separate nodes anyway, this problem is
solved by merely updating the table. Type 3 statements

always form complex nodes.[Ref 12:490]

32

Type 4 statements are handled similar to the other
control statements by assigning them to a separate node.
The difference is that the nodes containing type 4
statements are simple nodes instead of complex nodes. The
statement referenced by the DO statement always follows the
DO statement itself so the end of the loop isn't quite as
difficult to track. However, it is still necessary to
determine if it is also a type 2 statement. Here again, as
in type 3 statements, it does not represent a special

problem since it is already a separate node.[Ref 12:490-492]

Type 5 statements mark the end of the DO loop and as
such are formed into a separate complex node. However, if
this statement is the only statement in the range of the
do-loop then a separate empty or null node is set up between
the nodes formed by the type 4 and the type 5

statements.[Ref 12:490-492]

The algorithm functions by analyzing the executable
statements of a user's program. Any comments or data
declarations are not analyzed. The flowchart consists of 26
steps, each of which are detailed below.

Step 1 forms the first node from the first executable

statement.

33

Step 2 gets the next executable statement and
determines if it is a control statement (type 3 or 4). If
the next statement is a control statement, the algorithm
goes to step 8. If it is not a control statement, the
algorithm goes to step 3.

Step 3 determines if the current statement has been
referenced by another statement. 1If it has not, then it is
a type 1 statement and the algorithm goes to Step 4. If it
has been referenced previously, then the algorithm goes to
Step 18.

Step 4 retrieves the previous statement from the
program.

Step 5 analyzes the previous statement to determine
if it was a control statement. If the previous statement
was a control statement, then the algorithm goes to step
25. If it is not, then the algorithm goes to step 6.

Step 6 includes the current statement into the same
node 38 the previous statement and then passes control to
step 7.

Step 7 determines if there are any more statements to
be processed. If there are more statements, the algorithm
goes back to step 2. If there are no more statements, then

the next step is step 26.

34

Step 8 is reached from step 2 if the current
statement is a control statement. Step 8 looks at the
current statement to determine if it is a DO statement. If
it is a DO statement, the algorithm goes to step 9. If it
is not a DO statement, then the algorithm goes to step 18.

Step 9 is reached either from step 8 above or from
step 14. Step 9 puts the current statement into a new node
and then passes the algorithm to step 10.

Step 10 checks the following statements to see if the
reference statement of the DO loop is the same as the last
statement in the DO loop range. If it is the same, then an
empty node is needed and the algorithm goes to step 13. If
it is not the same, then the algorithm goes to step 11.

Step 11 scans the following statements to find the
range statement and then passes control to step 12.

Step 12 assigns the range statement found in step 11
to a separate new node. The algorithm then goes to step 14.

Step 13 is reached from step 10 when an empty range
node is needed. This step creates the empty node and then
goes to step 14.

Step 14 is reached from either step 12 or step 13.
Step 14 looks at the next statement to see if it is also a
DO statement. If it is, then the next step is step 9. If

it is not, then the next step is step 7.

35

Step 15 is reached from step 20 if the current
statement is referenced by a DO statement. Step 15 finds
the number of other DO statements that reference the current
statement and passes the algorithm to step 16.

Step 16 creates a separate node for each additional
DO statement so that each DO loop has a distinct beginning
node and ending node. The next step is step 17.

Step 17 connects each of the nodes created in step 16
to the node of its respective DO statement. Step 17 then
passes control to step 7.

Step 18 is reached either from step 8 if the current
statement is a control statement but not a DO statement
(type 3), or from step 3 if the current statement is not a
control statement but has been referenced by another
statement (type 2). Step 18 creates a new node for the
current statement and then passes control to step 19.

Step 19 checks the node cross-reference table to see
if the current statement is there. If it is not, then the
next step is step 20. If the current statement is in the
table, then the next step is step 21.

Step 20 is reached from step 19 or from step 21.

Step 20 checks the current statement to determine if it is
referenced by a DO statement. If it is referenced, then the
algorithm goes to step 15. If it is not, then the next step

is 22.

36

Step 21 looks up the proper entry in the node
cross-reference table and connects the current statement to
the node that is referencing it. The next step is 20.

Step 22 connects the current node to all of the other
nodes that reference it or to the destinations in the node
cross-reference table if the current statement is a control
statement. The next step is 23.

Step 23 determines if all of the statements
referenced by the current statement have already been
assigned to a node. 1If they have, control goes on to step 7
to get the next statement. If not, then the next step is
24.

Step 24 updates the node cross-reference table by
putting one entry in for each unassigned statement. Then
the algorithm goes on to step 7.

Step 25 is reached from step 5 to handle the special
case of a type 1 statement that is preceded by a control
statement. 1In this case, step 25 sets up a new node for the
current statement and then goes on to step 7.

Step 26 is reached from step 7 if all of the
statements have been exhausted. Step 26 is simply the end

of the algorithm.[Ref 12:491]

37

Dimond and King

The next article of interest is "A Flexible
Development System for Microprogrammable Microprocessors."
This article describes an expandable system based on
bit-slice technology. This system contains a variable
number (up to sixteen) of Register and Arithmetic Logic
Units (RALUs) and an equal number of Microprogram Control
Units (MCUs). In bit-slice technology, one RALU and one MCU
can be combined to make one microprocessor. However, in
this system, they are not connected together in a dedicated
fashion. The inputs and outputs of each of these devices
are passed through an interface unit that is controlled by a

general purpose host computer.[Ref 1:159-161]

User programs are written in BASIC and compiled in
the host computer. The individual operations to be
performed by the BASIC program are matched to microprograms
that are to be executed in the microprocessors. Each
microprogram represents one instruction. The host computer
also contains these microprograms in its main memory and

feeds them to the MCUs for execution.[Ref 1:162-164]

38

This system is dynamic in the sense that the host
computer selects the RALU and the MCU that are going to
execute each microprogram. Since the host computer also
contains the microprograms, the instruction sets executed by
the microprocesso~s can vary during execution. [Ref

1:161,164]

Rauscher and Agrawala

"Dynamic Problem-Oriented Redefinition of Computer
Architecture Via Microprogramming" discusses a technique for
architecture redefinition using customized microprograms.
This article establishes execution time and program size as
the performance to be optimized in constructing the
microprograms. The algorithms presented by the article
define procedures for automatically doing the following:

a) analyzing, at compile time, the intermediate

language representation of a program to determine

which sections can be made into primitives and
represented by a single "machine language"
instruction.

b) generating, at compile time, the microinstructions

to interpret these "machine language' instructions.

39

These algorithms take advantage of the fact that, even for
large programs,
a) instructions gererally fall into certain sequences
of operations and

b) small parts of a program account for most of its

execution time.[Ref 14:1007-1008]

Each object program is provided with its own set of
microcode that is loaded into the control store of the
computer Jjust prior to execution. This technique has an
obvious shortcoming in a multiprogramming environment as the
microcode must be changed at each context switch. However,
for programs that consume large amounts of processor time,
the use of the processor itself can be greatly

optimized.[Ref 14:1007]

Fuchs and Johnson

The article "An Expandable Multiprocessor
Architecture for Video Graphics" proposes a computer
architecture that is optimized for computer processing of
video images. The computer system described is composed of

a central controller and numerous individual processing

40

units. Each processing unit does all of the processing for

a small subset of the total pictu.se area.[Ref 4:64]

This architecture is not dynamically alterable, nor
do the processors have a variable word length. However, it
does illustrate an application where numerous processors are
executing independent calculations for a single application
with a time coordinated solution. It also is an
architecture that is optimized for the types and quantities
of calculations involved in computer image processing.[Ref

4:58-59]

41

III. Computer Generated Imagery Software

Computer Generated Images

Computer image generaticn is tne process of taxing
digitized descriptions of objects and creating a visual
scene in the proper perspective for display on a CRT
screen, The obJjects to be displayed are terrain features
(mountains, valleys), static objects (buildirngs, bridges),
and moving objects (airplanes). Every three dimensional
object to be displayed is divided into a finite number of
flat surfaces. This means that round objects must be
approximated by dividing the curved surface into some number
of flat surfaces. Each flat surface is then defined by
identifying the endpoints of the lines that describe or
define each edge. These lines are called edges and the flat
surfaces are known as faces. Any regular rectangular
object, such as a building, would be made up of six faces

(bottom, top and four sides).
If no other information except the definition of the

edges were given, the building would appear hollow and

transparent. In other words, the inside walls would be

42

visible from outside the building. When color information
is added to the faces, a dilemma occurs. The walls are now
opaque and there is confusion as to which surface is
visible., This contradiction is resolved by assigning a
priority to each face. The priority is assigned based on
the pcsition of the surface with respect to the viewer. A
face that is obscured by another face is given a lower
priority than the face that is closer to the viewer. Any
portion of a high priority surface that lies between the
viewpoint and a low priority surface will mask out that

portion of the low priority surface.

It is the Jjob of the computer image generation system

[

v t2ke the description of all items in the data base and
determine which edges are in the field of view (FOV). The
system then calculates the perspective of each visible edge
from the viewpoint. This edge is then projected onto the
viewing window. If any of the edges extend outside the
viewing window, they are clipped off to the edge of the
viewing window. Sophisticated image generation systems also
perform gradual shading on the flat sides of the curved
surfaces to present a more realistic looking curved
surface. Other possible enhancements include sun angle
effects such as shadows and the application of texture to

selected surfaces.

43

The viewing window is divided up into raster lines
and the raster lines are divided up into picture elements.
The final step in the image generation process is to convert
each surface to its corresponding picture elements and then

to define a color for each element.

Scene Generation Software

The scene generation software used in this study is a
part of a much larger system of software called the Data
Base Development System (DBDS). The flow diagram for the
system is shown in Figure 3-1. The purpose of the DBDS is
to create, modify and test CGI data bases in a non-real-time
manner., It provides the full range of data base creation
capabilities allowing all but the final verification to take
place independent of the video hardware. Processing can
take place interactively, allowing the user to vary
parameters and view the results as the data base is being
created. Once the data base is tested and verified, it is
used in a real-time system for generating dynamic visual

scenes,

44

CERTIFY CERTIFY
AND
8Locx

TERRAIN
TRIANGULATION

POLYGON
APPROXIMATION

|

TERRAIN /
CULTURE
INTERSECTION

sartace e
L

BATCH
SURFACE
SYSTEM

Xeypunched |

Environment
Oata

Monuai
Surface

File

BATCH
MODE L
SYSTEM

BATCH
ENVIRONMENT
SYSTEM

Mode!
Librory

TABLES
SYSTEM

Looal

INTERACTIVE
CULTURE
SYSTEM

| scene
GENERATION

INTERACTIVE
MODEL
SYSTEM

DATA
MANAGEMENT
SYSTEM

Globa!

INTERACTIVE
ENVIRONMENT
SYSTEM

Figure 3-1. Dota Base Development System Dicgram
45

The processing done by the scene generation software
in the DBDS is done by hardware in the real-time system.
The scene generator software in the DBDS simulates the

actual hardware in the real-time system.

The scene generation system is comprised of six
different parts, each with a specific function. The

functions of each processor is as follows:

Face Compression
Compresses the data describing each face into a
format that is more efficient for the remaining

calculations

Controller
1. Reads input data (Visual Parameter File)
2. Reads data base files (Environment File, Priority
Data File)
3. Reads Fixed data files (color trade, light

parameter table, texture map)

46

Frame 1

1.

Computes the direction cosine matrices required

to relate earth, viewpoint and model coordinate

systems. Figure 3-2 illustrates the coordinate set

definition

2.

Computes the constants for the view window (to

offset the viewpoint matrices to upper left-hand

window corner)

3.
the
4.
the

5.

Computes relative position of the viewpoint to
region.

Tests each data base region to see if it lies in
field of view (FOV)

Tests each region in the field of view (FOV) to

define the level of detail

6.

the

Computes for static data

a) relative viewpoint to subregion centroid

b) sun vector relative to the subregion

c) matrix for rotating static subregion data to
view window

Computes for moving models

a) moving model origin

b, moving model direction cosine matrix

47

VIEWPOINT V. P

Y, (EAST)

N

WINDOW Y, (NORTH)
v .l
w —
X,, (EAST)
w,! — MOVING MODEL
U
w
VN (NORTH)

NADIR YN (EAST)

N

G
GEOCENTRIC

Figure 3-2. Coordinate Set Definition
48

c) matrix to rotate moving model data to the

view window

d) sun vector rotated to the moving model

coordinate system

Frame 2

1. Reduces the scene data to raster line and line

element on the display window

2. Lists the active faces (for use in determining

visual priority from the view point)

3. Calculates color and texture data for use in

Frame 3

Priority Processor

Generates a list of the priority numbers for each

face in the active face list.

Frame 3

1. Selects the best
line

2. For each element
shading coefficients
3. Calculates color
the line

4. Outputs the line

edges for each element in the

in the line, calculates texture

intensities for each element in

to the video hardware

49

Appendix A contains a summary of all of the mcdules
arranged alphabetically. For each module, there is a list
of all of the modules that it calls and a list of all of the
modules that it is called by. In addition, there is an

identifier that denotes which of the six major programs

contains or calls that particular module. The modules are
divided into application modules and system modules. The
application modules are those written specifically for a
particular application. The system modules are a part of
the operating system library and their source code is not
available. The system modules are not a part of this

analysis other than the reference to them in this appendix.

Appendix B contains a list of all of the application

modules with a short description of the function of each.

Each of the six programs in the scene generator
software executes independently. The disk files are used
for intertask communication and the COMMON areas are used
for intratask communication. The first program, called
FRAME1, reads its input data from a disk file into COMMON
and then performs its functions. When FRAME1 finishes, it
writes all of its output data back out to a disk file to be

read in by the next process. This procedure is followed by

50

all of the subsequent processes until at last a scene is

output to the video hardware.

Required Data

There are two aspects of the software that are
important in this analysis. The first is the
characteristics of the variables and data being usea in the

programs. The second is the characteristics of the code

itself.

Characteristics of the Data. For purposes of the

following discussion, the term "variable" applies to all
memory positions used during execution that do not contain
instructions. All of the available information about the
variables used by the scene generator software can be found
from the sto age map at the end of the compiled listings.
This information includes the variable type (real, integer
or logical) and how much storage is allocated to it
(halfword, fullword, double). This measure of length is
rougher than what is ideally desired for this analysis
because it only gives the size allotted by the compiler.

This measure is usually given in halfwords (2 bytes) and

51

_}

multiples of halfwords and is assigned by the compiler based
on information supplied by the programmer. The compiler
makes no attempt to minimize the amount of memory required

for each variable.

For example, if the FORTRAN compiler allows one full
word (4 bytes) for the storage of a variable, that means
there are 32 bits available. However, if that variable only

assumes values of 1 and 2 during execution then there are

many bits that are unused. These unused bits are exactly

what is to be avoided by using a variable architecture.

Additional information on the range of values
required for each variable could be obtained by printing the
value of each variable every time it is changed during
execution. This process would require recompiling each
module with additional output statements that directed the
values of interest to an off-line file. However,
recompilation of all modules is not feasible at this time
because of the quantity of additional software which would
have to be running also. Additional software would be
required in order to support all of those functions that lie
outside of the scene generator block in Figure 3-1. It is
outside the scope of this effort to convert and debug all of

this software.

52

Program Analysis. Each line of code in the software

can be classified as either an executable statement or a
non-executable statement. The non-executable statements are
those which do not generate any machine instructions. There

are three general types of non-executable statements.

The first type are comment statements which are
completely ignored by the compiler. The second type are
used by the compiler to structure and allocate memory.
Examples of this type include DATA, COMMON and DIMENSION
statements. The third type generate data which requires
some memory. An example of this type of statement is a

FORMAT statement.

The executing lines of code consist of data
manipulation and control type statements. Data manipulation
statements include all lines with an arithmetic operation,
or which assign a value to a variable, or which perform a
test on data. Examples of arithmetic operations are
addition (+), subtraction (-), and multiplication (*). A
value assignment is made with an equal sign (=). Examples
of tests which can be performed on data include Less Than

(.LT.) and Greater than or Equal to (.GE.).

53

Control statements direct the flow of program
execution between alternate paths. Control statements can
involve decisions as in the case of IF or DO, or they can be

unconditional like GOTO or RETURN.

The data required from the analysis of the scene
generator software includes the type and quantities of the
instructions being executed. This information is used to
establish the instruction set of the computer being

designed.

Software Analysis

The method used to analyze the code to collect this

data is described below.

Task 1: Compile all programs and subroutines.

Compiling each module produces a variable storage map. This
map shows the name, size and type of all variables used in
that module. This information is used to describe the
characteristics of the data that must be handled by the

dynamic computer system being designed.

54

Compiling the modules was not a straightforward
task. The modules were originally written to run on a
Systems Engineering Laboratory (SEL) computer. Later, they
were converted to run on an Interdata computer. Now the
source code is once again on a SEL computer. The process of
getting them to compile on the current computer system

required numerous changes to the source code.

When the programs were written to run on the original
SEL computer system, the COMMON data areas were put into
INCLUDE files that were combined with the rest of the source
code at compile time. However, the Interdata compiler did
not support the INCLUDE function. Consequently, when the
programs were converted to run on the Interdata computer, a
special preprocessor was written to perform the include
function. This processor created a temporary intermediate
file from the source code and a second file that contained
all of the INCLUDE files. This intermediate file was then

processed by the regular FORTRAN compiler.

Now that the programs are to be compiled on another
SEL computer, it was necessary to write a preprocessor to
perform the same function. It was not possible to simply

put the common definitions back into INCLUDE files since

55

some INCLUDE files now had the same names as some of the

modules.

The syntax of some of the Interdata FORTRAN

statements differs from the syntax of the same statements in

the SEL FORTRAN. These statements had to be changed in
order to get the modules to compile. These changes were in

the following three areas:

1. ENDDO. Both Interdata and SEL FORTRAN support the
same kinds of DO loops. However, the ENDDO or DC loop
termination is different. SEL DO loops all end with an
ENDDO or CONTINUE regardless of the type. Interdata FORTRAN
DO loops end with a different ENDDO based on the type of DO

loop involved. For example, DO FOR ends in ENDDO FOR.

2. IF. Interdata IF statements do not require the
use of the word THEN following the IF clause. SEL FORTRAN

requires the word THEN for proper syntax.

3. Hex Data Declarations. Interdata FORTRAN supports
three types of hex data declarations, X, Y, and Z depending
on the conditions under which the data is used. SEL FORTRAN

only supports the X type.

56

Task 2: Compile a list of all variables and their

attributes. The variables used by each module come from
four sources. The first source is the local variables that
re used only within that module. The second source is the
common variables that are shared by other modules and are
identified by placing them in a separate area accessible by
all of the modules that need them. The third type are
temporary variables that are generated by the compiler to
hold intermediate results. The fourth source are the
constants required for calculations. Only the first two

types are of interest here.

The list of variables 1is constructed with the
variable name, the location of the variable, the variable
type, the variable size, the variable dimension and the
total memory required for storage of all positions of the
variable. There may be more than one variable in the list
with the same name because different modules can have local
variables with the same name with no conflict. Modules can
even have local variables with the same name as variables in
common as long as that common is not contained in the
subject module. The only requirement is that there are not

two variables in the same module with the same name.

57

The location of the variables is given in the list in
order to distinguish between variables of the same name. If
the variable is in common, the name of that common is given
as the location. If the variable is a local variable, the

name of the module is given as the location.

The variable type can be integer, real, character or
logical. 1Integer variables in the table are denoted by the
letter I in the type column. Likewise, real variables are
denoted by R, character by C and logical by L. The variable
size is given in increments of bytes. The type and size

combinations encountered are as shown in Table 3-1.

Table 3-1: Valid Variable Type and Size Combinations

Iype Size

Integer 2 bytes
Integer 4 bytes
Real 4 bytes
Real 8 bytes
Logical 4 bytes
Character 1 byte

Each variable is identified in the variable storage
map at the end of each module's listing as being either a
variable or an array. Arrays are identified in this 1list by
the word ARRAY in the usage column. The dimension of each

variable is determined from the definition of the variable

58

in the’source code. Two dimensional arrays are converted to
a single dimension by multiplying the two dimension values.
The total memory required for the storage of each variable

is calculated by multiplying the dimension by the size.

Six lists are constructed, one for each of the six
main parts of the scene generator software. Each list is
compiled by extracting the pertinent information from the
variable storage map at the end of each listing. The list
for each part of the scene generator software is started
with the listing for the main program of that part. Each
list is then completed with the variable storage map of all
subordinate modules of that part of the scene generator.
Each variable in each variable storage map is compared to
the variables in the appropriate list. Variables from the
subordinate modules are added to that list if:

1. they have a different name from all the other

variables that are already in the list or

2. they have the same name as a variable that is

already in the list but are in a different location.
The complete tables are given in Appendix C. The data is

summarized in Table 3-2 and Table *-3.

59

Table 3-2: Summary cf Variable Data

Program Variable Totals Percent
Name Type Size Variables Dimension Total Variables Storage
FACOOM Integer 2 2 14,096 28,192 3.45 57.56
Integer 4 53 5, 191 20,764 31.38 42,40
Real 4 1 1 4 1.72 0.01
Real 8 2 2 16 3.45 0.03
TOTAL 58 19,290 48,976 100.00 100.00
FRAME1 Integer 2 13 1,838 3,676 2.77 10.31
Integer 4 180 3,838 15,352 38.30 43.07
Logical 4 16 47 188 3.40 0.53
Real 4 248 4,071 16,284 52.77 45.69
Real 8 13 18 144 2.77 0.40
TOTAL 470 9,812 35,644 100.01 100.00
FRAME2 Integer 2 25 4,128 8,25 3.65 6.38
Integer 4 335 18,691 74,764 48.98 57.79
logical 4 38 69 276 5.56 0.21
Real 4 283 11,500 46,000 41.37 35.56
Real 8 3 10 80 0.44 0.06
TOTAL 684 34,358 129,376 100.00 100.00
FRAME3 Character 1 8 8 8 0.48 0.00
Integer 2 435 54,872 109,744 26.33 41.65
Integer 4 807 24,318 97,272 48.85 %.92
lLogical 4 14 76 304 0.85 0.12
Real 4 373 14,002 56,008 22.58 21.26
Real 8 15 19 152 0.91 0.06
TOTAL 1,652 93,295 263,488 100.00 100.01
SCGEN Integer 2 10 1,963 3,926 4.81 6.95
Integer 4 129 6,263 25,052 62.02 44.34
Logical 4 12 43 172 5.77 0.30
Real 4 55 6,821 27,284 26.44 48.29
Real 8 2 8 64 0.%% 0.11
TOTAL 208 15,098 %,438 100.00 99.99
PRIPRO Integer 2 65 60,757 121,514 20.31 77.28
Integer 4 238 7,824 31,296 74.38 19.90
Logical 4 1 32 128 0.31 0.08
Real 4 1 1,062 4,248 5.44 2.70
Real 8 5 7 % 1.5%6 0.04
TOTAL 320 69,682 157,242 100.00 100.00

60

Table 3-3: Total Variable Data

Variable Totals Percent
Type Size Variables Dimension Total Variables Storage
Character 1 8 8 8 0.24 0.00
Integer 2 550 137,654 275,308 16.21 39.83
Integer 4 1,742 66,125 264,500 51.36 38.27
logical 4 81 67 1,068 2.39 0.15
Real 4 971 37,457 149,828 28.63 21.68
Real 8 40 64 512 1.18 0.07
TOTAL 3,392 241,575 691,224 100.01 100.00

The data in Table 3-2 is arranged by major program.
The first column of the table is the major program name.
The second column is the variable type and the variable size
in bytes. The next set of columns gives totals for the
number of distinct variable names, the sum of all the
dimensions of those variables, and the total memory required

for storage of those variables.

The last set of columns shows two different pieces of
information concerning the relative occurrence of the
separate types of variables. The first of these columns
shows the percent of occurrences of that type of variable to
the total number of distinct variables. It is calculated as
the ratio of each value in the Variables column to the total

of that column. The second column of this set shows the

61

percent of memory that type of variable occupies in relation

to the total memory for that module.

It is important to note that there is a subtle

difference in meaning between the total number of distinct

variable names and the total of their dimensions. The first
line of Table 3-2 illustrates this point. The program
FACCOM contains only two variables that are two byte
integers. However, their total dimension is 14,096.
Instructions in FACCOM only have to deal with two variables
but the total memory requirement for them is over fifty
percent of the total memory of that program. This means
that the handling of the dimension function, or indexing, is
the significant factor in the processing required to

manipulate these variables.

Task 3: Itemize instructions by function and

variable size. The individual lines of code of each module

are analyzed to determine what functions are being
performed. This data is used to determine what types of
machine instructions would be required in order to perform

those functions.

62

Each operation in an executable statement is
categorized according to its function. If data manipulation
is involved, then the operations are further broken out
according to the size and type of the data involved. The
result is a count of the total number of individual
operations (integer additions, subtractions, etc.) performed

within that module.

A large number of the source statements contained
operations involving more than one size or type of variable
(mixed mode operations). 1In order to make the data
consistent across each operation, the standard rules for
FORTRAN parsing were used. That is:

1.) all statements are evaluated from left to right

2.) multiplication and division take precedence over

addition and subtraction

3.) in operations involving two different types of

variables (integer, real, etc.) each variable is

first converted to the higher order type.

In addition, other assumptions were made in order to

simplify the data collection and the resulting design:

63

1. Dimensioned variables were treated like regular
variables. That is, unless an arithmetic operation occurred
within the index, no special operation was counted. The
assumption is that the instructions being designed into the

dynamic architecture computer would have the capability to

handle variable indexing without any additional overhead.
If an arithmetic operation was performed within the index,
then that arithmetic operation was counted. For instance,
the variable MAP(2,I-7) contains a subtraction operation on
a four byte integer variable that would be counted as a
separate operation. However, the indexing of the variable

MAP would not be counted as an operation.

2. Assignment operations are considered to be cf the
same size and type as the size and type of the variable on

the left side of the assignment sign.

The complete data tables are in Appendix D. The data

is summarized in Table 3-4, Table 3-5, and Table 3-6.

Table 3-4 contains the total number of occurrences
for each operation for each type of variable. The first
column contains the symbol or description of the operation

being tabulated. The second column contains the number of

64

Table 3-4: Itemization of Variable Operations Data

R
c
R

Operation I*2 % I*4 R*4 % R*8
+ 206 .19 510 1.1 0O 0.00 232 7.85 11

- 46 1.16 160 3.52 C 0.00 253 8.%6 25

* 39 98 71 1.% 0O 0.00 329 11.14 19

/ 3 0.08 39 0.8 0 0.00 101 3.42 18

*% 0 0.00 2 0.04 0O 0.00 30 1.02 8

= 1599 40.29 2327 51.15 71 13.76 1312 44.41 19
Arith IF 4 0.10 3 0.07 0 0.00 0 0.00 0
Logic IF 770 19.40 533 11.72 282 54.65 251 8.%0 2
ELSEIF 5 1.49 34 0.75 4 0.78 13 0.44 2
.EQ. 622 15.67 322 7.08 0O 0.00 38 1.9 0
.NE. 325 8.19 124 2.73 0 0.00 15 0.51 0
.GT. 63 1.59 172 3.78 0O 0.00 91 3.08 0
LT, 23 0.58 52 1.14 0O 0.00 124 4.20 0
.GE. 20 0.50 26 0.57 O 0.00 5 1.9 0
.LE. 8 0.20 33 0.73 0 0.00 18 0.61 4
.AND. 123 3,10 72 1.58 9 1.74 73 2.47 0
.OR. 59 1.49 69 1.52 139 26.94 18 0.61 0
.NOT. 0 0.00 0 0.00 11 2.13 0 0.00 [
Totals 3969 100.07 4549 100.C7 5716 100.01 2954 100.00 108

Table 3-5: Summary of Variable Operations Data

Variable Total
Type Operations PerCent

I * 2 3969 32.81

I * 4 4549 37.61

L 516 4.27

R * 4 2954 24.42

R * 8 108 0.89

Total 12096 100.00
65

@ @
U

COOWOO0000 ¢

888588888

g r

8
8

Table 3-6: Summary of Other Operations Data

Operation Quantit
GO TO 1260
GO TO ASSIGN 4
Computed GO TO 1
DO n 302
DO FOR 150
DO FOREVER 1
DO UNTIL 20
DO WHILE 12
LEAVE 2
Procedure Call 716
Subroutine CALL 703
READ 4
WRITE 484
FORMAT 372
SELECT CASE 5
CASE 18
ASSIGN 47
REWIND 8
RETURN 242
STOP 3
Total 4354

occurrences of each operation that uses two-byte integer
variables. The third column gives the percent of
occurrences of that operation on two-byte integer
variables. This percent figure is calculated based on the

total number of two-byte integer operations.

The remaining columns in the table are paired Jjust
like column two and column three. Each remaining pair of
columns contains the data for four byte integer, logical,

four byte real and eight byte real variables respectively.

66

Table 3%-5 contains a summary of the totial operations
by variable type. It also contains the percent of

operations by variable type relative to the total number of

operations.

Table 3-6 gives the total number of non-data
operations that are contained in the scene generator
software. These operations are necessary to the functioning
of the software but they do not manipulate any data other

than counters or internal variables.

67

IV. Dynamic Architecture Computer Design

A suitable dynamic architecture computer design could
be developed based strictly on the storage requirements of
the various types of data used throughout the software. In
this case, the scene generator software is being used as an
example. An analysis of the storage percent column in Table
3-2 suggests assigning a priority to each variable type
based on the percentage of its memory requirements. In
approximate terms, this means that the two-byte integer
variables require about the same amount of memory as the
four-byte integer variables. It also means that the
four-byte real variables require only about half of the
memory space as both of the integer cases. The memory
requirements of the other types of variables are all much
smaller in comparison. This approach might yield a set of
dynamic computer configurations with the following

processors:

1.) eight byte wide real

2.) two 4-byte wide integer

3.) two 2-byte wide integer + one 4-byte wide real

68

A fourth possibility would include logical operations with:

4.) one 4-byte wide integer + one 2-byte wide integer

+ one 2-byte wide logical

All of the logical variables declared within the
modules are four bytes wide. However, in every instance
that they are used, one byte would suffice. Therefore, all
of the logical operations could be handled by the two-byte

wide integer configuration.

A very small number of character variables exist
within the entire system of programs. However, their
existence is misleading because there are no character
manipulations in the software at all. The character
variables in this application are only declared and placed
in common for diagnostic and future expansion purposes.
Therefore, it is not necessary to consider them in this

design.

Even if there had been some instructions that used
character variables, the total number of character variables
would still be too small to warrant a configuration with a

separate processor for character manipulations. Only if

69

there were a large number of character instructions would a

separate processor be practical.

An eight-byte wide processor for real variables is
desired in the computer design because of the ease of
implementing eight-byte wide floating point instructions in
an eight-byte processor. That is, without this wide
processor, there would be a significant increase in the
number and complexity of individual operations necessary to
process the eight-byte wide data. The total number of
operations would increase because the complete width of the
data would not fit in the processor all at once. The
complexity of the operations would increase because it would
be necessary to keep track of all of the carry-ins and
carry-outs between the operations. However, because of the
relatively low number of eight-byte real variables, it would
be expected that the computer would spend very little time

in this configuration.

The two four~byte wide integer processors in the

second configuration are desirable because of the high

percentage of four-byte integer variables.

70

The third configuration is also desirable because it
can process twice as many two-byte integer variables as it
can four-byte real variables. Since there are twice as many
two-byte integer variables as there are four-byte real
variables, the third configuration provides a balance
between these two variable types. The second and third

configurations are also balanced between themselves.

The above design is based on the total storage
requirements of all of the types and sizes of variables. It
does not account for the fact that the relative proportion
of the types of variables is different when based on the
number of distinct variable names. When the data is
analyzed from the point of view of different variables
instead of Jjust storage requirements, it is observed that
there is a bigger difference in the number of two-byte
integer and four-byte integer variables. In fact the number
of four-byte integer variables is three times the number of
two-byte integer variables. The number of four-byte real
variables is still roughly half the number of four-byte
integer variables but it is now about twice as many as the
two-byte integer variables. This suggests that there might
be some benefit in expanding the total width of the dynamic
computer architecture to accommodate more four-byte integer

processors.

71

This could be easily accomplished by simply adding one
four-byte integer processor to each of the proposed

configurations. The result would be as fcllows:

1.) one 8-byte real + one 4-byte integer

2.) three 4-byte integer

3.) two 2-byte integer + one 4-byte real + one 4-byte
integer

4.) two 4-byte integer + one 2-byte integer + one

2-byte logical

This design would place at least one four-byte integer
processor in every configuration. Since more than half of
the variables in the software are four-byte integers, this
architecture would permit at least one four-byte integer
process to be executing whenever any other process was
executing. This would be desirable if the data regarding
the number of variables is representative of the type of

processing that is required.
So far the design has been based on the types and

quantities of data encountered. The number and type of data

manipulations (instructions) is not in the same ratio.

72

Table 4-1 shows a comparison of the percent of
occurrences of each type of variable, the percent of memory
required for each type of variable, and the percent of
occurrence of instructions for each type of variable. This
data is repeated from previous tables in Chapter 3. 1In
addition, a relative ranking is given for each percent.
This number is merely the rank order of each percent within

that column.

Table 4-1: Relative Occurrences by Variable Type

Variable type Variables Storage Instructions
I * 2 16.21 3 39.83 1 32.81 2
I * 4 51.36 1 38.27 2 37.61 1
L 2.39 4 .15 4 4.27 4
R * 4 28.63 2 21.68 3 24.42 3
R * 8 1.18 5 .07 5 .89 5

Table 4-1 itemizes the analysis techniques employed in
this study and summarizes the data gathered by each
technique. It is important to note that the three variable
types occurring most often are the same regardless of the
method of analysis. That is, the logical variables and the
eight-byte real variables always occur at a much smaller
rate than the other three variable types. Therefore, the

data collected supports design number two above.

73

The second design has a total of 13 processors divided
up as follows:
seven 4-byte integer processors
three 2-byte integer processors
one 2-byte logical processor
one 4-byte real processcr

one 8-byte real processor

The scene generator software is currently executing in
a Systems Engineering Laboratory (SEL) 32/70 computer. In
order to achieve a gain in execution speed over the SEL
computer, the dynamic computer being designed should have at
least equivalent capabilities in areas such as the
instruction set. The functional classification and number
of instructions of the SEL 32/70 computer system is given in
Table 4-2. The variable types and the instructions used to
implement various software functions are discussed in the

following paragraphs.

Integer variables are called fixed point variables in
the SEL computer vendor's literature. The SEL computer
systems handle four sizes of integer variables. They are
byte (1 byte), halfword (2 bytes), word (4 bytes), and

doublewords (8 bytes).

74

Table 4-2: SEL 32/70 Instruction Repertoire

Classifications Number
Fixed Point Arithmetic 30
Floating Point Arithmetic 8
Boolean 17
Load/Store 29
Bit Manipulation 8
Zero 5
Shift 13
Interrupc 13
Compare 11
Branch 9
Register Transfer 13
Input/Output 10
Control 16
Hardware Memory Management 4
Writable Control Store]

Total 189

There are 20 fixed-point arithmetic instructions of
~aich five deal with word operands and five deal with
halfword operands. The rest of the fixed point instructions
deal with byte operands, doubleword cperands, register
cr2rands, immediate operands, and the miscellaneous

functions called extend sign and round register.

Real variables are referred to as floating point
variables by the SEL computer manufacturer. Floating point
variables come in two types in this machine. The floating
point word variables are four bytes long and the floating
point doubleword variables are eight bytes long. The format
of the floating point variables is illustrate 1in Figure

4-1.

75

—t

A
EXPONENT

i 4 3
T

F +— $ —
24 BT FRACTION

T

-

I Y N B JE DS D S NS TS S T S NS DU N SN S U R N N U B O W
Ot 2 3 4 6 &7 8 9 (0112134131817 1819 20212223242526272829303)

¢ I DN . —_— 4
w T 7 T T T
s EXPONENT 88 B8IT FRACTION

VIR S W W B | I S T B Y U WA WO N WS NS S NS (D S 0 N S
O 1 2 34 5 867 8 80 11 121314° 74980 8] 52 53 54 55 56 57 50 59 60 6! 62 €3 64

Figure 4-|. Format of Floating Point Variables
There are eight floating point instructions in the SEL

32/70. Four of these are for the four-byte real operands

and four are for the eight-byte real operands.

The computer's logical instructions perform the AND
function, the OR function, and the exclusive-0OR function on
bytes, halfwords, words and doublewords. Additional logical
instructions are available for performing these functions on

registers and masks.,

IF statements in the software are implemented in the
har dware by performing the necessary arithmetic or logical
operations on a temporary work variable and then testing the
result for the specified conditions. Instructions are
available in the SEL 32/70 computer for doing arithmetic
comparisons on all four sizes of variables. Some of the
branch instructions have the capability of testing the

results of a compare and conditionally branching.

76

Dynamic Computer Features

Four different configurations were selected at the
beginning of this chapter as being the optimum
configurations for the dynamic computer architecture, A
graphic example of the four configurations is given in

Figure 4-2.

8 Byte Reai 4 Byts Integer

L 4 Byte Integer 1 4 Byte (nteger | 4 Byte Integer O

2 Byte 2 Byte
L 4 Byte Reai 1 Integer ! Integar | 4 Byte Integer I
2 Byte 2 Byte

1 4 Byte Integer 1 Logical Llnnqor { 4 Byte Integer K

Figure 4-2. Possible Configurations

77

Format of floating point variables. The format of the

floating point variables in the dynamic architecture
computer are the same as those of the SEL 32/70 computer.
That is, there is one bit for sign, seven bits for the
exponent value, and either 24 or 56 bits for the mantissa.
Figure 4-1 illustrates the format. This method assures that
the variables in the dynamic architecture computer will have
sufficient accuracy and storage capacity to achieve adequate

performance.

Memory structure. The most important feature of the

dynamic architecture computer is the memory structure.
There are several methods of implementing an efficient
memory access but any approach that is selected must

efficiently overcome the problems of changing the word

length between configurations.

The changing width of the memory causes a problem in
two ways. The first is in the area of memory access. The
desired objective of each memory fetch should be to retrieve
exactly one variable or i-- <tion regardless of the width
of the data being retrieved. If the d2ta were longer than
the width of the fetch, then multiple fetches would be

needed. If the data were shorter than the width of the

fetch, then only one fetch would be needed but the memory
space that was not needed would be wasted space. A memory
access mechanism that is able to get the proper number of
bits each time it operates is the major benefit to having a

variable architecture computer.

The other problem arises when accessing memory to
retrieve instructions. If a common instruction format and
length are selected so that the instructions for each
configuration are the same, then a conflict arises when the
working width of the memory changes. If the desired length
of the instructions is given to be the length of the
shortest variables in memory (16 bits in this case), this
length will be found to be insufficient to contain a large
enough memory address. If the instruction length is any
longer than the shortest variables, then one instruction

fetch would require multiple memory accesses.

Obviously there is a conflict between these two
requirements, There is the desire to vary the width of
memory accesses to make the retrieval of variables
efficient. There is also the desire to keep the memory
fixed to make the instruction retrieval efficient. Several
possible memory structures that provide a partial solution

are discussed below.

79

One possible method would have each memory location
the same size as the smallest variable used. This would
require multiple memory accesses for most of the variables

processed and would not achieve the desired performance.

Another approach would have a separate memory for cach
size of variable. That is, the 16 bit variables would be
stored in a physically different memory than the 32 bit
words and the 64 bit words. Whenever the computer
architecture is switched from one configuration to another,
the memory being accessed would also be switched. This
method would make it difficult to have more than one size of
variable in the same statement. There would also have to be
a mechanism for moving data around between the various

memories.

The next method would have a separate memory for data
and instructions. Since all instructions would be contained
in the same memory, they could all be the same length.
However, this approach makes it more difficult to implement

any parallel execution paths.

A variation of this method would contain a separate

memory for each processing unit in the system. That is, the

80

64 bit floating point processor would have its own memory
and each 32 bit integer processor would have its own
memory. This approach would provide for parallel execution
paths but there would still be a need for a mechanism for

moving data around between the memories.

Another approach would allow different length
instructions for each type of processor. This technique
would not permit programs and data to be moved around from
computer to computer after they were loaded, thus making the
system less dynamic. The idea of making the instructions
common to ail configurations within the computer is called
the principle of program universality. The concept of
program universality was introduced in the article
"Designing LSI Modular Computers and Systems" [Ref 6:9] and
was further discussed in the article "Adaptation Properties

for Dynamic Architectures" [Ref 13:550].

It is obvious from the above discussion that there is
no single solution which will completely satisfy all of the
requirements for a dynamic memory structure without having a
detrimental effect on some other part of the system.
Therefore, the design of the dynamic computer architecture

must be based upon a trade-off of the total system

81

requirements. The basic requirements for the dynamic system

may be summarized as follows:

1.) The memory allocated to each variable should be no

bigger than what is required to exactly store that variable.

2.) The capability should exist for converting
variables from any type to any other type and from any size

to any other size.

3.) All instructions should have a common format and
length. There are 18 different arithmetic type operations
(Reference Table 3-4) and 20 other operations (Reference
Table 3-5) identified in the scene generator software. This
means that the operation code of the instructions should
have at least six bits. Six bits allows a total of 64
distinct operations. It would actually be desirable to
allow even more bits in the operation code field for future
inclusion of other instructions. For instance, calls to
procedures such as Sine and Cosine would improve efficiency

if they were implemented as additional instructions.

4.) The memory address portion of each instruction

should be sufficient to directly address all variables in

82

memory. Table 4-3 shows the total number of each size of
variable used in the scene generator software along with the
number of bits requir=d to directly address that number of

variables.

Table 4-3: Summary of Variable Addressing Requirements

Size Integer Logical Real Total Bits for
(Bytes) Variables Variables Variables Variables Addressing
2 275,308 275,308 19
4 264,500 1,068 149,828 415,396 19
8 512 512 9
691,216 20

Twenty bits allows a direct memory address of 1,048,576

variables.

5.) The complete memory space must be large enough to
physically contain all of the variables and instructions
required for the scene generator software. £Ls shown above,
691,216 different memory locations are required for storage
of all of the variables. 1In addition, there are 12,096
variable operations (Reference Table 3-5) and 4354 other
operations (Reference Table 3-6). This represents a total
of 16,450 separate instructions which must also be placed in

memory.

83

Instruction format. Instructions for the dynamic

computer are the same format and size regardless of the
configuration. The instruction length was chosen to be 32
bits long. This length allows 9 bits for an operation code,
20 bits for an address, and 3 bits for a memory bank
identifier. This instruction format is illustrated in
Figure 4-3. The memory bank identifier field allows the
computer currently executing that instruction to perform the

required data transfer with any of the six data banks.

Memory
Op - Code Bank Address

NSNS SN SRS N BN NS ENENEEBENS

Figure 4 -3 Instruction Format

All of the arithmetic and control instructions
outlined in the tables in the previous discussion are
included. In addition, instructions are provided for
changing the architecture from its current state into any of

the other configurations.

Look ahead carry. Another feature in the dynamic

architecture computer is the implementation of a full

84

look-ahead carry for all of the types of variables that the
system can handle. Without this capability, the computer
would have to rely on a ripple carry to perform its

arithmetic functions.

Figure 4-4 illustrates how the carry in and carry out
function is implemented in the dynamic architecture
computer. Multiplexers are provided in order to move the
carry out bit to either the carry in portion of the next

computing section or to the appropriate condition code

register.
“ zy2 | 8 < A = Processor A
B=F ocessor B
Co= Carry out
Ci= Carry in
Z = Multiplexor to
Status and Status and control s?urc'e
Condition code Condition code and destination
Register Register of carry bit
C =
Look - ahead
Carry iogic

Figure 4-4 . Carry-In/Carry-QOut Structure

85

Final design. The final design of the dynamic

architecture computer incorporates all of the features
described above. Figure 4-5 illustrates a portion of the
final design. This figure shows the interconnection of one
processing section and the memory banks. The same direct
connection exists between all of the processor sections and
all of the memory banks. The operation of the dynamic

architecture computer is described in the next section.

Dynamic Computer Operation

Memory in the dynamic computer 1is structured into six
banks of 16-bit words. The bottom portion of each memory is
accessed as individual 16-bit words. The middle portion of
each memory is accessed as 32-bit words. That 1s, each
32-bit memory access retrieves one portion of a 32-bit word
from one ban’ 3nu the other portion of the 32-bit word from
the adjacent bank. The top portion of the memory in banks

on

1)

through four is treated as 64-bit words.

Each memory bank has a Memory Address Register (MAR)

and a Memory Data Register (MDR) associated with it. As far

Jayndwon a4nyosliyaay 21wpukg G- 8anbi4

Se9((S JiIq-b t JO pesodwoo y J088620.1d = Y
HYW JO Siuejuos 8inot 0} J10x8|d}IPN = A
HAW JO Siuajuod 8inos 0] J0XBIdIPN = X

ebpJ40ys }iq H9 40§ AJOWanW=+9

abD10}S }|q 2¢ 410} KIOWBN=2¢

8bpi0ys }jq 9| 10} AJowaN = 9|

g J08S820.d PUD Yy J10SS800.d

usamjeq pespys Jejs|bay uoponisul=Fy)

g 108sad0ud 4oy s9s|Bay uojonysu) = Iy |

v 4088829014 10} 18)s|Bay uoponysul = Vy |
N Kiowapw 1o} J94s)Bay pypg Ksowaiw=Nyaw
v 108832014 10} 184siBay pjoq Asowsnw = Yygw
N AJowep 4o0j 194s|Bay ssaippy Asowen=Nyynw
v 40s83201d 10} 18iSi6ay sseuppy Kiowepn = YHYIN

13junoy woiboid = Hd

i

qu_mumwmnu

A

v

ol
B od
C Y Vyanw
Vv ﬁ N ~
%
e

87

;|

T

Syvw Suvmw Yuvw
9l 9l 9l
2¢ 2¢ 2¢
9

9 yaw Suaw ¥ yaw

HYW

HANW

il

91

+9

HVYW

HAW

9l

lyww

9l

2

€
9

1 4

as the individual memory banks are concerned, these
registers function in exactly the same manner as the MAR and
MDR of an ordinary computer memory unit. That is, each
memory bank accesses 16 bits at a time, regardlecss of the
size and configuration of the processor requesting the
access. Words that are longer than 16 bits are accessed
from the same memory address in adjacent memory banks but
not ‘necessarily at the same time. Memory accesses that
retrieve different portions of a data word from adjacent
memory banks need not occur simultaneously in all of the
affected banks. Rather, with this architecture, each memory

bank can operate independent of the other banks.

The method for loading and unloading the MAR and MDR
as registers differs from an ordinary computer. Instead of
having one MAR and one MDR for each processor and memory
pair, each memory bank and each processor has a separate set
of registers. The MAR of each memory unit is loaded from
the MAR of one of the processors or from the Program Counter
(PC) of one of the processors. Likewise, the MDR of each
memory unit is loaded and unloaded through the MDR of one of
the processors or through the Instruction Register (IR) of

one of the processors.

88

Each processing unit is composed of all of the
necessary bit slice chips to construct a 16 bit wide
processor. Two of these units are combined together to form
the 32 bit wide processor when that configuration is called
for. Likewise, the hardware from four units are combined to
create the 64 bit processcr. The connections that determine
whether or not a particular unit is a processor by itself or
is a part of a larger processor are controlled by individual

control units.

Each processor is connected to every memory through a
separate data path. This gives each processor the
capability to access each memory directly. This direct
access capability could have been provided with a data bus
which would also facilitate moving data from one memory to
another. However, the bus approach would slow down the
operational speed of the dynamic computer by forcing all
memory transactions to wait for a turn on the bus. The
assumption being made with the direct connection approach is
that the majority of the variables accessed by a given
processor will be contained in a single memory unit. Since
there are the same number of memory units as there are
processors, each memory may be thought to be most directly

associated with a given single processor. If a processor

89

needs to access a variable in a more distant memory, it can
still do so without the time penalty associated with a

bussed approach.

Memory access conflicts are handled by having a
separate MAR and MDR for each processor as well as each
memory. When a particular processor needs to access a
particular memory, the multiplexer associated with that
processor's MAR first checks to see if the MAR for that
memory is empty. An empty MAR signifies that no other
processor is using that memory at this time. If the MAR is
empty, the processor transfers the memory address contained
in its MAR into the MAR of that memory. The memory then
proceeds with the transaction by transferring the contents
of either the processor's MDR or the contents of the
memory's MDR depending on whether a read or a write was
requested. If the memory is currently busy with another
transaction, this will be signified by a non-empty MAR in
the memory. The processor must then wait until the previous

transaction is complete before proceeding.

The Program Counter (PC) and the Instruction Register

(IR) may also utilize the memory's registers in order to

retrieve instructions. The instruction fetch mechanism

S0

follows the same procedure for accessing a memory that the
processors follow. Control circuits within the multiplexers
remember with which processor or instruction register the

memory 1s currently transacting.

Instruction fetches are implemented by utilizing a 32
bit instruction buffer (IB). Two adjacent processors share
a single instruction buffer. This instruction buffer is
filled from two adjacent memories whenever an instruction is

required by either processor.

Status and condition codes are normally stored in a
separate register for each 16-bit processor. However, when
two 16-bit processors are configured to act as a single
32-bit processor, the condition codes are passed between the
two 16-bit processors and stored in a single condition code

register.

The floating point processors are configured such that
the exponent portion (the first eight bits) of the floating
point variables always occurs in the same eight bits of
hardware. When a floating point operation is being
performed, these eight bits can be electronically separated
from the remaining 24 or 56 bits in order to make the

handling of the exponent function easier.

91

Summary

The dynamic architecture computer can change its
configuration to match the processing requirements of the
program currently being executed. The design is optimized
to execute a specific software package with a minimum of

memory access time.

There is sufficient detail in the design to make some
timing estimates and to compare these estimates with the
execution requirements of a single, serial processor. This

analysis is described in the next chapter.

92

V. Analysis and Conclusions

Analysis

The thrust of this thesis is to present the design of
a dynamic architecture computer that will realize a speed
improvement over a conventional architecture computer. The
design employed has at least two processors available for
parallel execution at any time. If the software also has
two parallel paths to execute, then it is natural to assume
that this computer will now execute the same software in
half the time that it would take to execute in a
conventional architecture computer. However, there are
several factors that must be considered in calculating the

dynamic computer execution time.

The first factor is to make an allowance for the
switching time for changing the configurations. This point
can be resolved by assuming that the time required to switch
configurations is at least no greater than the time required
to execute any of the other arithmetic or control
operations. In the variable architecture computer, the

configuration change would take place during one time frame

93

and then twc operations would execute in parallel during the
next time frame. In a regular architecture computer, one
operation would have been executed during the configuration
switch and the other operation would have been executed

during next time frame anyway.

The second factor is that it is not necessarily true
that there will always be two compatible operations ready to
execute. It is possible that the processes that are ready
cannot execute in the same configuration given the
combination of processors that have been established. In
other'words, there may not be a four-byte integer operation
ready to execute whenever there is an eight-byte real

operation executing.

In order to address this problem, it is necessary to
know what instructions would occur simultaneously within the
code. To do this, it would be necessary to exactly model
the program flow for all of the programs in the ;ystem in
question. Since some of the scene generator programs used
as the example are very unstructured, it would be difficult
to achieve an accurate program flow graph without extensive

rewriting of the code.

94

Given that an accurate program flow graph is not
practical, it is still possible to approximate the speed
with which the code might be executed in the variable
architecture computer. In order to do this, several more

assumptions are required.

First, assume that each identified operation is
executed in a single machine instruction. This is a
reasonable assumption since the instruction set of the
dynamic computer has been designed to provide this

capability.

Second, assume that each machine instruction takes
exactly the same amount of time. This is a reasonable
assumption for all operations except possibly the floating

point operations.

Third, it is necessary to assume that the statistical
data collected by the analysis discussed above fairly
represents the overall operation of the system of programs.
Therefore, individual module deviations will average out
over the entire system. This also means that the relative
percentages of operations of various types will remain the
same even though many individual instructions will be

executed multiple times.

95

This final assumption acknowledges the fact that
individual modules may have a high number of operations that
are of the identical type and size. When this happens, a
certain number of those instructions cannot be executed in
parallel since not enough processors would exist in any of
the configurations. However, modules such as this would
still be executable in parallel with another module that has

a high number of different type of operation.

Given these assumptions, it is now possible to make

the following statements:

1. When a configuration is selected to perform
operations on a certain type of variable, the other
processors in that configuration will have operations
available to perform. For example, when configuration
number one is selected in order to execute eight-byte real
operations, there will also be enough four-byte integer
operations ready to execute so that no processing resources

are idle.

2. The order of operations is not significant. This

means that enough operations are available for each

96

configuration, such that the dynamic computer can remain in
that configuration for a relatively long time when compared
to the configuration switching time. This makes the

configuration switching time insignificant.

The best case analysis can now procced as follows:

1. Select a particular type of variable to operate on

2. OSelect the configuration that will execute that
type of operation

3. Cycle the dynamic computer enough times in that
configuration to execute all required operations on that
particular type of variable

4. Select a different type of variable and repeat

steps 1 through 4.

Table 5-1 summarizes the total number of operations
required for each variable type. Table 5-2 summarizes the
configurations and the types of operations available in each
configuration. Table 5-3 details the results of this
analysis performed by selecting first configuration number
one, then configuration number two, followed by
configuration number three and finally configuration number

four.

97

rable 5-1: Summary of Processors and Operations

Variable Total Total
Type Operations Processors
I * 2 3969 3
I * 4 4549 7
L 516 1
R * 4 2954 1
R * 8 108 1
TOTAL 12,096 13

Table 5-2: Summary of Configurations and Operations

Processors
Configuration Number Type
1 1 eight-byte real
1 four-byte integer
2 3 four-byte integer
3 2 two-byte integer
1 four-byte integer
1 four-byte real
4 four-byte integer

two-byte integer
two-byte logical

S AN

Table 5-3: Detailed Execution Analysis

Total
Instruction I*2 I*4 L R*4
Configuration Cycles 3969 4549 516 2954
1 108 o 108 0 0
Balance 3969 4441 516 2954
4 516 516 1032 516 0
Balance 3453 3409 0 2954
3 2954 5908 2954 0 2954
Balance 0 455 0 0
2 152 0 456 0 0
Balance 0 0 0 0

Total 3730

98

= A
OO *
@™ o

olooloolo o

Selecting configuration number one and then cycling
the dynamic computer for 108 operations will execute all of
the eight-byte real operations. As can be seen from Table
5-3, this will also execute 108 of the four-byte integer
operations. This leaves a balance of 4,441 four-byte
integer operations and the rest as they were. The balance

for all operations is shown on the next line in the table.

The next configuration selected is number four. This
configuration is cycled 516 times in order to execute all of
the required logical operations. Also at this time, 516
two-byte integer operations and 1032 four-tyte integer
operations are executed. The balance of the operations are

shown on the next line in the table.

Selecting configuration number three next will execute
all of the four-byte real operations. Notice that there is
a surplus of two-byte integer operations when this

configuration is executed 2,954 times.

Finally, configuration number two will execute the
remaining 455 four-byte integer operations. Only 152
machine instruction cycles are required since this
configuration has three separate processors for this type of

operation,

99

The total number of dynamic computer instruction
cycles required is 3730. The total number of instructions
required from 2 conventional computer is 12,096. Figure 5-1
shows that, given ideal conditions, this dynamic
architecture computer can execute the same set of operations
in only 31 percent of the time that it would take a

conventional computer.

----- X 100 % = 30.8%
12096 |

—

Figure 5-1: Percentage of Execution Time Required
by Dynamic Computer

The worst case condition would be the situation where
each configuration would execute only one instruction before
being forced to change to another configuration. 1In this
case, the total execution time would be approximately twice
the time required to execute the same software in a

conventional computer.

The actual execution efficiency lies somewhere in

between., However, a more accurate estimate of execution

efficiency would have to based on a more accurate picture of

100

“‘

what the software actually does while executing. As
mentioned earlier, the true execution path can not be known
without reorganizing and rewriting some of the example
software. Suggestions for how this might be done are

discussed in the section on recommended further research.

Conclusions

The design and analysis presented in the previous
sections do not deal with any of the current technology of
software engineering and program structure. Although it is
possible to expand this architecture to fit more general
purpose applications, it would require that the compiler be
very intelligent. The compiler would have to be smart
enough to break any program down into clusters of equal size
variables and then place them into the proper memory bank.

A lot of research has been done in finding techniques to do
this. Some of these techniques are discussed in the

articles in the literature review section.

It may also be found that it is necessary to assign a

priority on memory transactions by the various processing

units. The data accumulated in analyzing this one

101

particular application suggests that memory accesses from

processors other than the one most directly associated with
a particular memory should have priority over memory access
by the directly asscciated processor. Instruction accesses

should have priority over both.

A single instruction buffer for two processors will
probably not be enough in a general purpose dynamic
computer. However, in this application a significant number
of the operations are on 32 bit data. Since this means that
two 16 bit processors will be combined together to create
one 32 bit processor, these two processors are not really
sharing the instruction buffer at all. The large number of
%2 bit operations in this application is enough to Jjustify

having a single instruction buffer.

More research is required on dynamic computer
architectures., However, in the specific application
addressed by this study it has been shown that a significant
increase in processing speed can be achieved by using a

dynamic computer.

102

Recommendations for Further Research

The design proposed in this thesis for a dynamic
arcnitecture computer was based strictly on the statistical
occurrence of various types of variables and instructions.
As such, it has several limitations which could be
eliminated through further research work. For instance,
each operation is counted only once even though it may be
executed several times in a loop or in multiple entries into
the same subroutine. This is how the instructions would be
counted if one copy of all of the programs and subroutines
were placed in memory at the same time. However, when the
program executes, execution will enter several of the
subroutines many times. Since the instructions contained in
those subroutines are then executed multiple times, those
instructions could be given added weight when it comes to

calculating the number of instructions per variable type.

One method of solving this problem using the data
collected would be to count the total number of instructions
that would be executed if all of the subroutine's CALLs were
made. This would require multiplying the numbers for each
subroutine by the number of times that subroutine was

called. For instance, when a subroutine is called twice

103

from another program, it is the equivalent of passing

through that subroutine's code twice.

Another method of analysis would be to substitute the
code from each subroutine directly into the place where that
subroutine CALL was made. This procedure would require
quite a few variable name replacements as each variable in
the CALL statement list could have a different name in the

body of the subroutine.

At the same time that the subroutine substitutions
were being made, other superfluous code could be
eliminated. Lines of code like comment lines, printer
output and data declarations would not be executed during

real-time so they could be eliminated for the analysis.

An analysis of the inner workings of the scene
generator software would make it possible to remove much of
the disk input and output. As stated in Chapter Two, the
communication between major programs is accomplished by
passing data in and out of disk files. It can be seen from
the module descriptions in Appendix B that a sizable amount
of code exists for the sole purpose of compacting and

expanding the data in the disk files. If all

104

of the main programs were resident in memory at the same
time during real-time execution, then most of the disk

activity could be eliminated.

The end result of this method would be a continuous
stream of FORTRAN code. If the code was structured, this

would also facilitate constructing a program flow graph.

A program flow graph is another valid method of
analyzing the code. It would have worked in this case if
the code had been written in a nice, structured manner.
However, in many cases, the code as written is very
convoluted and an adequate flow graph can not be constructed
without a serious restructuring of the code. The algorithm
detailed in Chapter Two provides a convenient methodology

for constructing a program flow graph.

Probably the most important and productive task which
could be done to continue this study would be to obtain the
actual variable sizes. As stated earlier in the discussion,
this task was not possible at this time because of all of
the additional software that needs to be running in order to
collect this data. This additional software is needed in

order to supply the scene generator software with the

105

required scene data in the correct format. However, if this
task were possible, it would provide the data to predict

more exacting variable sizes.

The next task would be to find the execution path of

the ‘nstructions. This task would also be simplified if the
scene generator software were actually executing. If the
scene generator programs were running, it would be possible
to follow the execution through conditionals and loops by
setting up intermediate ocutput variables at all places in
the code were a branch takes place. This information, along
with a program flow graph, would provide a better look into

the parallelism of the processes,

The third task would be to look at the functioning of
the software itself. Since 525 lines must be produced in
order to display one scene, there is a possibility that each
line could be calculated in parallel. There is also a
possibility that each pixel calculation would represent a
separate identifiable calculation. Pixel calculations might
be optimized by dedicating a separate computer configuration

to this purpose.

106

Also, by analyzing the details of the software, it
would be possible to streamline the executable code. This
would involve removing all of the intermediate output such
as printer output, instructions that calculate the timing of
the major programs, and most of the disk input and output.
Most of the disk input and ocutput exists because of the way
the software passes data between processes. This portion of
the disk operations could be removed if all of the processes
remained in memory at all times. Some of the disk
operations would remain in order for the scene data itself

to pass from data base to data base.

Finally, there is no need to restrict the design of
the dynamic architecture computer to a few simple
configurations. There are many more possible combinations
that could be constructed using the same amount of
hardware. These combinations should be further optimized
with the additional data collected in the foregoing

suggested steps.

It is also not necessary to limit the design of the
dynamic architecture computer to a small set of hardware
with a small set of configurations. Given a good program

flow graph and adequate data on the size of all variables

107

involved, an architecture could be designed that would be as
wide as necessary to execute all possible parallel paths.

It is probable that the number of configurations that would

be needed would still be limited.

108

—3

mno

AN
.

References

Dimond, K. R., and A. J. King. "A Flexible Development
System for Microprogrammable Microprocessors,"
International Journal of Electrical Engineering
Education, April 1979, pp. 156-165.

Estrin, Gerald. "Organization of Computer Systems: The
Fixed Plus Variable Structure Computer,” Proceedings of
the Western Joint Computer Conference, 1960, pp. 33-40.

Estrin, Gerald, B. Bussell, R. Turn, J. Bibb. "Parallel
Processing in a Restructable Computer System," IEEE
Transactions on Electronic Computers, Vol. EC-12, pp.
747-755, 1963.

Fuchs, Henry, and Brian W. Johnson. "An Expandable
Multiprocessor Architecture For Video Graphics," The
Sixth Annual Symposium On Computer Architecture. New
York: IEEE, 1979, pp.58-67.

Kartashev, Steven 1., and Svetlana P. Kartashev. "A
Powerful LSI Metacomputer System With Dynamic
Architecture For Simulation Of Complex Problems,"
Modeling And Simulation Annual Pittsburgh Conference
Proceedings. Pittsburgh: ISA, 1977, pp. 483-488.

Kartashev, Steven I., and Svetlana P. Kartashev.
"Designing LSI Modular Computers And Systems,"
Proceedings Of The International Symposium On Mini And
Micro Computing. New York: IEEE, November 1978, PP.
1-9.

Kartashev, Steven I., and Svetlana P. Kartashev.
"Dynamic Architectures: Problems And Solutions,"

Computer, July 1978, pp. 26-40.

Kartashev, Steven I., and Svetlana P. Kartashev. "LSI
Moduler Computers, Systems, And Networks," Computer,
July 1978, pp. 7-15.

Kartashev, Steven 1., and Svetlana P. Kartashev.
"Software Problems For Dynamic Architectures: Adaptive
Assignment Of Hardware Resources," IEEE Computer
Society International Computer Software And Application
Conference. New York: IEEE, 1978, pp. 775-780.

109

10.

1.

12.

13.

14.

15.

16.

Kartashev, Steven I., and Svetlana P. Kartashev.
"Adaptable Pipeline System With Dynamic Architecture,”
Proceedings Of 1979 International Conference On Parallel
Processing. New York: IEEE, 1979, pp. 222-230.

Kartashev, Steven I., and Svetlana P. Kartashev. "A
Multicomputer System With Dynamic Architecture," IEEE
Transactions On Computers, October 1979, pp. 704-721.

Kartashev, Steven I., and Svetlana P. Kartashev.
"Distribution Of Programs For A System With Dynamic
Architecture,”" IEEE Transactions On Computers, June
1982, pp. 488-514.

Kartashev, Steven I., and Svetlana P. Kartashev.
"Adaptation Properties For Dynamic Architectures,”
AFIPS National Computer Conference Proceedings.
Montvale: AFIPS Press, 1979, pp. 543-556.

Rauscher, Tomlinson G., and Ashok K. Agrawala. "Dynamic
Problem-Oriented Redefinition Of Computer Architecture
Via Microprogramming," IEEE Transactions On Computing,

November 1978, pp. 1006-1014.

Vick, Charles R.,. Steven I. Kartashev, and Svetlana P.
Kartashev. '"Adaptable Architectures For Supersystems,'
Computer, November 1980, pp. 30-35.

Computer Program Product Specification, Mathematical

Model for Scene Generation System CPCI Volume III, 20
Sept 1979, Contract F33657-78-C-0421.

110

Bibliography

Kartashev, Steven I., and Svetlana P. Kartashev.
"Evolution In Dynamic Architectures," Microprocesscors
And Microsystems, July-August 1979, pp. 249-250.

Wileden, Jack C. "An Introduction To the Modeling of
Parallel Systems With Dynamic Structure," Proceedings of
1979 International Conference On Parallel Processing,
New York: IEEE, 1979, pp. 65-73.

White, Donnamaie E. Bit-Slice Design: Controllers and
ALUs, New York: Garland STPM Press, 1981.

Myers, Glenford J. Digital System Design With LSI
Bit-Slice Logic, New York: John Wiley and Sons, Inc.,
1980.

Mick, John, and James Brick. Bit-Slice Microprocessor
Design, New York: McGraw-Hill, 1980.

~--. The Am2900 Family Data Book, Sunnyvale CA: Advanced
Micro Devices, 197Q.

111

Appendix A

Module Calling Summary

112

~NoOwn A~ W n

10
11
12
13
14

17

Module Calls
AREA1
COLOR
AREA2
COLOR
AREA3
COLOR
AREA4
COLOR
ARECAL
AREMOD
CMNOUT
PUT
PUTCLR
PUTSET
CoL
CPBLND
CPFADE
CPLITE
COLOR
CPBLND
CPFADE
CPLITE
CSDEF
CXMAP
CLOSE
PUT
PUTCLR
PUTSET
REED
SETFIL
SETRD
DECODE
DLCAL
REED2
SETRD2
VTP
DRCTRY
EXIT
IPUT
REED
SETRD

LR2,SINGS,TB2

TEB2
LRz
PTLGEN

PTLGEN
SCGEN

FACPRO,PTCAL

AREA1,AREA2,AREA3, AREAY4,
LRz, SINGS,TB2

COL
COL
CCL
PARSEL
FRAME?3

PRIRSV
FACPRO

SCGEN

Called By
LR<, SINGS,TB2

113

Main Program

FRAME3
FRAME3
FRAME?3
FRAME?3

FRAME3
FRAME3
SCGEN

FRAMEZ2

FRAME3

FRAMEZ2
FRAMEZ2
FRAMEZ2
FRAME3
FRAME?

FRAME?3
FRAMEZ

SCGEN

Module

Calls

18 EDGCAL

19

20

21

22

23

24
25

EDGGEN

EDGORD

EDWOUT

ERRRPT

FACCOM

FACOUT
FACPRO

EXIT
FEP
NEWED
REED2
SETRD2
VTP

CLOSE
PUT
PUTSET
SETFIL

BCLR
BSET
MODIFY
MODRD
MODSET
ORDER
PUTCLR
REED
SETRD

PUT2

EXIT
MODIFY
MODRD
MODSET
SETFIL
TIME

PUT2

BSET
COL
DLCAL
EDGCAL
EXIT
FACOUT
FMOD
MAPNDX
PTCAL
REEDZ2
SETRD2
VTP

Called By Main Program
FACPRO FRAMEZ2
FRAME?3 FRAME3
FRAME3 FRAME3
FRAME2,NEWED,NEWPL FRAME?Z
MDCLR2,MODCLR,MODFY2,MODIFY, FRAME1
MODRD,MODSET,MODST2,PTCLRZ2, FRAME2
PUT,PUT2,PUTCLR,REED, FRAME?3
REED2, SETRD, SETRD2 PRIPRO
SCGEN
FACCOM
FACCOM
FACPRO FRAMEZ2
FRAMEZ2 FRAMEZ2

114

Module

Calls

26 FADCMP
27 FEP
28 FMOD
29 FRAME1

30 FRAMEZ2

CLOSE
FADCMP
LNGLAT
LOD
MMFAD
MODCLR
MODIFY
MODSET
MOVE
MULT
PUT
PUTCLR
PUTSET
REED
ROTMAT
SETFIL
SETRD
TIME
TMULT
TRANS
TTMUL
TVEC
VEC
VTP
WINDOW

CLOSE
EDWOUT
FACPRO
HDROUT
INITZ2
LSTOUT
MULT
PTCLR2
PUT2
REED2
SETRD2
TIME
TVEC
UPDATE
VTP

FRAME1

EDGCAL,PTCAL

FACPRO

Called By

115

Main Program

FRAME1
FRAMEZ2
FRAMEZ
FRAME1

FRAMEZ2

31

32
33

34

36
37

38

39

40
41

Module

Calls

FRAME3

HDROUT
INIT2

INIT3

INPUT
LNGLAT
LOD
LR2

LSTOUT

MAPNDX
MDCLR2

CXMAP
EDGGEN
EDGORD
EXIT
INIT3
ORDER
PATPRO
PRIRSV
PTLGEN
PTLSET
RSTPED
RSTPLT
STPED
STPLT
TIME
VIDOUT
VIDPRO
WNDDMP

PUT2

CLOSE
PUTST2
REEDZ2
SETFIL
SETRD2

CLOSE
RAMSET
REED
SETFIL
SETRD

REED
SETRD

EXIT

AREA1
AREA2
AREA4
COLOR

Called By

FRAMEZ2

FRAMEZ2

FRAME?

SCGEN

FRAME1
FRAME1

PARSEL

MODSELECT - Internal

PUT2

ERRRPT
EXIT
SYSIO

FRAMEZ2

FACPRO
UPDATE

116

Main Program
FRAME3

FRAMEZ2

FRAMEZ2

FRAME3

SCGEN

FRAME1
FRAME1
FRAME3

FRAMEZ2

FRAMEZ2
FRAMEZ2

42
43

44

45

46

47

48

49

50
51
52

53

54

55

56
57

58

59
60

Module Calls Called By
MMFAD FRAME1
MODCLR FRAME1
ERRRPT
EXIT
SYSIO
MODCNT PPFPL
PPCNT
PPSORT
MODFY2 UPDATE
ERRRPT
EXIT
SYSIO
MODIFY EDGORD,FRAME1,PATPRO
ERRRPT
EXIT
SYSIO
MODRD EDGORD, PATPRO
ERRRPT
EXIT
SYSIO
MODSET EDGORD,FRAME1,PATPRO
ERRRPT
EXIT
SYSIO
MODST2 UPDATE
ERRRPT
EXIT
SYSIO
MODULA PRIPRSV
MOVE FRAME1
MULT FRAME1,FRAME?2
NEWBLK PPFPL
PPCNT
RDBLK
NEWED EDGCAL
BSET
EDWOUT
NEWPL PTCAL
EDWOUT
NSEDGR PRIRSV
NSQUT NSRSLV
PUT
PUTSET
SETFIL
NSRSLV PRIRSV
NSOUT
PRINTEDGETABLE -~ Internal
ORDER EDGORD, FRAME3
OVERID PARSEL

117

Main Program

FRAME1
FRAME1

PRIPRO

FRAMEZ2

FRAME1
FRAME3
FACCOM

FRAME3
FACCOM

FRAME1
FRAME3
FACCOM

FRAMEZ

FRAME3
FRAME?
FRAME1
FRAMEZ
PRIPRO

FRAMEZ2

FRAME?2

FRAME3
FRAME3

FRAME3

FRAME3
FRAME3

61

62

63
64

65

66
67
68
69

70
71
72
73
74
75
76
77

78
79
80
81
82

Module

PARSEL

PATPRO

PPCNT
PPFPL

PPINP

PPLIST
PPMSG
FPSORT
PPUOL

PRAPLU
PRAREA
PRAUPD
PRCLR

PRDMP

PREDGR
PREEFS
PRELOD

PREPD

PRESEL
PRFBKU
PRINIT
PRIPRO

Calls

CSDEF
LR2
OVERID
SINGS
TB2

CLOSE
MODIFY
MODRD
MODSET
PRDMP
PUTCLR

MODCNT
NEWBLK

CLOSE
REED
SETFIL
SETRD

PPSORT

PRAUPD
PREEFS
PRNEFS
PRNXTO
PRSTOR

CLOSE
EXIT
PPFPL
PPINP
PPLIST
PPMSG
PPUOL
TIME
WRTFPL

Called By

PRIRSV

FRAME3

MODCNT,NEWBLK

PRIPRO

PRIPRO

PRIPRO
PRIPRO

MODCNT, PPUOL

PRIPRO

PRIRSV
PRIRSV
PRELOD
PRIRSV
PATPRO
PRIRSV
PRELOD
PRIRSV

PRIRSV
PRIRSV
PRIRSV
PRIRSV

118

Main Program

FRAME3

FRAME3

PRIPRO
PRIPRO

PRIPRO

PRIPRO
PRIPRO
PRIPRO
PRIPRO

FRAME3
FRAME3
FRAME3
FRAME3
FRAME3
FRAME3
FRAME3
FRAME3

FRAME>
FRAME3
FRAME3
FRAME3
PRIPRO

83

84
85
86

87

89

90

91

92

93

Module

Calls

Called By

PRIRSV

PRNEFS
PRNXTO
PROUT

PRSTOR
PRTPLU

PRVIS
PTCAL

PTCLR2

PTLGEN

PTLSIT

CLOSE

DECODE
MODULA
NSEDGR
NSRSLV
PARSEL
PRAPLU
PRAREA
PRCLR

PREDGP.
PRELOD
PREPD

PRESEL
PRFBKU
PRINIT
PROUT

PRTPLU
PRVIS

SELDMP

PUT
PUTSET
SETFIL

CLEARTRANSITIONLIST -~ Internal

COL
FEP
NEWPL
REED2
SETRD2
VTP

ERRRPT
EXIT
SYSIO

ARECAL
AREMOD
CLOSE

PUTCLR
SAVELT

CLOSE
PUT
PUTSET
SETFIL

FRAME3

PRELOD
PRELOD
PRIRSV

PRELOD
PRIRSV

PRIRSV
FACPRO

FRAMEZ

FRAME3

FRAME3

119

Main Program

FRAME?3

FRAME3
FRAME3
FRAME?Z

FRAME3
FRAME3

FRAME3
FRAME?2

FRAMEZ2

FRAME?

FRAME3

94

95

96

97

98
99

100

101

102

103

104

105

106

107

Module Calls
PUT
ERRRPT
EXIT
SYSIO
PUT2
ERRRPT
EXIT
SYSIO
PUTCLR
ERRRPT
EXIT
SYSIO
PUTSET
PUTST?2
RAMOUT
EXIT
IOERR
SYSIO
RAMSET
EXIT
IOERR
SYSIO
RDBLK
REED
SETFIL
SETRD
REED
ERRRPT
EXIT
SYSIO
REED2
ERRRPT
EXIT
SYSIO
ROTMAT
RSTPED
CLOSE
REED
RSTPLT
CLOSE
REED
SAVELT
PUT
PUTSET
SETFIL

Called By Main Program

CMNOUT, CXMAP, EDGGEN, FRAME1,
NSouT,PROUT,PTLSIT, SAVELT,
WRTFPL

EDWOUT,FACOUT, FRAME2, HDROUT,
LSTOUT

CMNOUT, CXMAP,EDGORD, FRAME1,
PATPRO, PTLGEN, WRTFPL

CMNOUT, CXMAP, EDGGEN, FRAME1,
NSOUT, PROUT,PTLSIT, SAVELT,
WRTFPL

INITZ2
VIDOUT

INIT3
NEWBLK

CXMAP,DRCTRY,EDGORD, FRAME1,
INIT3,INPUT,PPINP,RDBLK,
RSTPED,RSTPLT, STPED, STPLT,
TSTXMD, VPAINC, VPLTC, WNDDMP
DLCAL,EDGCAL,FACPRO, FRAMEZ2,
INIT2,PTCAL

FRAME1
FRAME3

FRAME3

PTLGEN

120

FRAME1
FRAME3
PRIPRO
SCGEN

FRAMEZ

FRAME1
FRAME3
PRIPRO
SCGEN

FRAME1
FRAME3
PRIPRO
SCGEN

FRAMEZ2
FRAME3

FRAME?3

PRIPRO

FRAME1
FRAME3
PRIPRO
SCGEN

FRAMEZ2

FRAME1
FRAME3

FRAME3

FRAME3

108

109
110

111

112

113

114

115

116

117
118
119
120

121

SCGEN

FRAME3
FRAME1
FRAMEZ2
FRAME3
PRIPRO
SCGEN

FACCOM
FRAME1
FRAME3
PRIPRO
SCGEN

FRAMEZ2

FRAME3

FRAME3

FRAMES

FRAME3

FRAME1
FRAMEA
FRAME3
FRAME3

Module Calls Called By Main Program
SCGEN
CLOSE
CMNOUT
DRCTRY
INPUT
SETFIL
TIME
SELDMP PRIRSV
SETFIL CXMAP,EDGGEN, FACCOM, FRAME1,
EXIT INIT2,INIT3,NSOUT,PPINP,
OPEUW PROUT,PTLSIT, SAVELT, SCGEN,
STPED, STPLT,UPDATE, VPAINC,
VPLTC,WNDDMP,WRTFPL
SETRD CXMAP,DRCTRY,EDGORD, FRAME1,
ERRRPT INIT3,INPUT,PPINP,RDBLK,
EXIT STPED, STPLT,TSTXMD, VPAINC,
SYSIO VPLTC, WNDDMP
SETRD2 DLCAL,EDGCAL, FACPRO, FRAMEZ,
ERRRPT INIT2,PTCAL
EXIT
SYSIO
SINGS PARSEL
AREA1
AREA2
COLOR
MODSELECT - Internal
STPED FRAME3
CLOSE
REED
SETFIL
SETRD
STPLT FRAME?3
CLOSE
REED
SETFIL
SETRD
TB2 PARSEL
AREA1
AREA2
AREA3
COLOR
MODSELECT - Internal
TMULT FRAME1
TRANS FRAME1
TSBNST TSBSNO
TSBSNO TSESP
TSBNST
TSDBN TSESP

121

FRAME3

Module Calls Called By Main Program
122 TSEA TSEDA FRAME?

123 TSEDA TSESP FRAME3
TSEA
124 TSEDGR TSESP,TSINIT FRAME3
125 TSEMOV TSESP FRAME3
126 TSESP VPTEX FRAME3
TSBSNO
TSDBN
TSEDA
TSEDGR
TSEMOV
TSLODS
TSMUX
TSPINC
TSSHAD
TSTXMD
127 TSINIT VPTEX FRAME3
TSEDGR
128 TSLOD TSLODS FRAME3
129 TSLODS TSESP FRAME3
TSLOD
130 TSMUX TSESP FRAME3
131 TSPINC TSESP FRAME3
132 TSSHAD TSESP FRAME3
733 TSTXMD TSESP FRAME3
REED
SETRD

SETUPLOD - Internal

SETUPMAP - Internal calls REED and SETRD
134 TTMUL FRAME1 FRAME1
135 TVEC FRAME1,FRAMEZ2 FRAME1

FRAMEZ2

136 UPDATE FRAMEZ2 FRAME2

CLOSE

MDCLR2

MODFY2

MODST?2

SETFIL
137 VEC FRAME FRAME1
138 VIDOUT FRAME3 FRAME3

RAMOUT
139 VIDPRO FRAME3 FRAME3

CLOSE

VPAINC

VPCFC

VPFADE

VPIFLD

VPILN

VPLNDL

VPLTC

VPMLF

VPSIMP

VPTEX

122

_

Module Calls
140 VPAINC
REED
SETFIL
SETRD
141 VPCFC
142 VPFADE
143 VPIFLD
144 VPILN
145 VPLNDL
146 VPLTC
CLOSE
REED
SETFIL
SETRD
147 VPMLF
148 VPSIMP
149 VPTEX
TSESP
TSINIT
150 VTP
151 WINDOW
152 WNDDMP
REED
SETFIL
SETRD
153 WRTFPL
PUT
PUTCLR
PUTSET
SETFIL
Name Called
BCLR EDGORD
BSET EDGORD,
CLOSE

Called By Main Program
VIDPRO FRAME3
VIDPRO FRAME3
VIDPRO FRAME3
VIDPRO FRAME3
VIDPRO FRAME3
VIDPRO FRAME?3
VIDPRO FRAME3
VIDPRO FRAME3
VIDPRO FRAME3
VIDPRO FRAME3
DLCAL,EDGCAL,FACPRO, FRAME1, FRAME1
FRAMEZ2, PTCAL FRAMEZ2
FRAME1 FRAME1
FRAME3 FRAME3
PRIPRO PRIPRO
System Modules

By

FACPRO,NEWED

CXMAP, EDGGEN, FRAME1, FRAMEZ2,
INIT2,INIT3,PATPRO,PPINP,

PRIPRO,
RSTPED,

PRIRSV, PTLGEN,PTLSET,
RSTPLT, SCGEN, STPED,

STPLT,UPDATE, VIDPRO, VPLTC

123

Name

EXIT

IOERR
IPUT

OPENW
SYSIO

TIME

Called By

DRCTRY,EDGCAL, FACCOM, FACPRO,
FRAME3,LOD,MDCLR2,MODCLR,
MODFY2,MODIFY,MODRD,MODSET,
MODST2, PRIPRO,PTCLR2,PUT,
pPUT2,PUTCLR, RAMOUT, RAMSET,
REED,REED2, SETFIL, SETRD,
SETRD2

RAMOUT, RAMSET

DRCTRY

SETFIL
MDCLR2,MODCLR,MODFYZ2,MODIFY,
MODRD, MODSET,MODST2, PTCLR2,
PUT,PUT2,PUTCLR,RAMOUT,
RAMSET, REED, REED2, SETRD,
SETRD2

FACCOM,FRAME1,FRAME2, FRAME3,
PRIPRO, SCGEN

124

Appendix B

Module Descriptions

125

~N O U A

11

12

13

14

Module

Description

AREAA

AREA2

AREA3

AREA4

ARECAL
AREMOD
CMNOUT

COL

COLOR

CPBLND

CPFADE

CPLITE

CSDEF

CXMAP

generates the scene obJject areas for area 1
specified by the edge parameter tables included
in the subfunctions SINGS, TB2, and LRZ2.
generates the scene object areas for area 2
specified by the edge parameter tables included
in the subfunctions SINGS, TB2, and LRZ2.
generates the scene object areas specified by
the edge parameters in the two-edge top/bottom
case.

generates the scene obJject areas for area 4
specified in subfunction LR2.

calculates areas subtended by a point source for
a given raster line.

modifies the light source area by comparing two
point lights within that area.

creates a disk file that contains tbhe
intermodule COMMON data. This data file cerves
as the intermodule data link between all the
modules of the Scene Generator. The PUT
submodule is the primary means of dumping the
COMMCN's out to disk.

processes, per entry, one face or light. For
normal faces, it builds and modifies for sun
illumination; for light faces, it modifies color
by brightness; for point lights, it calculates
fading range; and it stores results in modified
color memory.

generates the color intensity Aarameters
specified by the case parameter tables.
integrates into a face either sky, ground, haze
or the next indicated face. Once done, this
module will then modify the brightness of the
face according to the sun illumination.
calculates the fading coefficient depending upon
range and the fading determinate. It also
returns arguments for full fading and for no
fading.

determines brightness, color, and size for point
lights using light parameter constants, the
light extinguishing curve and range.

identifies the conditions which determine
two-edge case numbers and sets an indicator to
the code representing the extant conditions.
constructs a table in which the number of edge
vertices on each raster line are recorded and
the number of point source boundaries that start
and stop on each raster line are recorded.

126

15

16

17

18

19
20

21

22

23
24

25

Module

Description

DECODE

DLCAL

DRCTRY

EDGCAL

EDGGEN
EDGORD

EDWOUT

ERRRPT

FACCOM
FACOUT

FACPRO

examines the face characteristics and edge flags
of the four edges in the edge load store to
decode the case types.

checks to see if designated light is in
universal features file; reads data from disk
using SETRD2 and REED2; checks for visibility of
light.

orders the Environment Data Blocks (EDB's) that
make up the Environment Data Base; pull all of
the data out of the EDB's that will be used by
the Frame I Module. A directory of pointers is
constructed; each pointer is the actual record
number of an EDB in the data base. The result
is an ordered list of pointers that organize the
EDB's by coarse region centroid, and by level of
detail within each coarse region. The number of
12' x 12' regions in the data base, along with
their centroids and their coordinate set
indicator is determined.

distinguishes between environmental and
universal data, inputs correct data, rotates
vertices as necessary, sets up appropriate
variables, processes face edges, builds edges of
lights, and stores data through NEWED submodule,.
calculates the left and right intercepts where
each edge crosses the raster line.

processes an ordered list of edge left
intercepts to obtain a list of relative face
numbers, and from that list, a list of relative
priority numbers for the faces in the scene.
counts the number of edges in the face and the
number of lights, supplies the proper headings,
and, using submodule PUT2, puts data into files
corresponding to disk sector size.

reports any error received as the result of an
input/output operation.

compresses face list.

determines face type, modifies terrain face
based upon priority range, calculates feature
numbers for universal obJjects, and calculates
relative face number and writes the record into
the active face list.

clears active external face list, checks on the
number of faces to be processed, reads data from
buffer, computes values, checks for visibility
and universal features, computes variables
dependent upon sun illumination, checks texture
orientation, builds temporary active face list,
checks for proper organization of data and
builds new external face list.

127

26

27

28

29

30

31

32

33

34

Module

Description

FADCMP

FEP

FMOD

FRAME1

FRAMEZ2

FRAME3

HDROUT

INIT2

INIT3

calculates the Frame II and Frame III fading and
horizon coefficients to be used in sky, ground
and haze color processing.

tests to determine if the mode is point light or
face. If face it then tests for minimum size
light face. If it is minimum size light or
point light, a test is made to determine if the
light is visible in channel is tested. If not
minimum size light face or point light, the
vertices are checked to determine if any
boundaries have been crossed, and if so, the
vertices are replaced and tested. Then it tests
for a possible pseudo edge and defines it if
necessary.

computes the pattern/shading coefficients for
Frame III by computing the view point vector,
rotating face vectors as needed, retrieving the
appropriate texture/shading data and determining
texture coefficients.

calculates the rotation matrices needed by other
modules, performs region channel assignment on
environment data provided by the Scene Generator
Controller Module, and calculates fading and
horizon coefficients for fading; performs the
executive function of controlling the other
submodules within the task FRAME1.

initializes, reads subregion data and processes
clusters, faces and universal features and
updates the intermodule COMMON data file for use
by future modules; performs the executive
function of controlling the other submodules
within the task FRAMEZ.

calls the subfunctions that constitute the color
intensity calculations in the required sequence;
performs the executive function of controlling
the other submodules within the task FRAME3.
generates and then writes the header to the
active face list. The header will be comprised
of the BLOCK#, BLOCK TYPE, VP VECTOR, and the
BLOCK SCALING FACTOR.

initializes files, builds logical unit table to
match with other input/output submodules, reads
in COMMONS, opens all Frame II files and
initializes the test green color table.

clears appropriate COMMON areas, opens the
necessary input files stored on disk and reads
selected input data.

128

35

36

37

38

39
40
41

42

45

44

45

46

47

Module

Description

INPUT

LNGLAT

LOD

LR2

LSTOUT
MAPNDX
MDCLR2

MMFAD

MODCLR

MODCNT

MODFY2

MODIFY

MODRD

reads three data files needed by the Scene
Generator Modules: the Visual Parameter file,
the Environment Data Base Header file and the
Color/Light Parameter file. These files are
used to build the intermodule COMMON's that
provide other modules with necessary data.

Using the REED submodule, actual disk accesses
are transparent to the INPUT submodule, allowing
data to be taken from the disk files in smaller
blocks only as needed.

creates a nadir to geocentric rotation matrix
based on longitude and latitude and converts the
viewpoint from longitude, latitude. and altitude
to feet from the earth's center.

selects data blocks to be processed based on
level of detail and coarse region.

processes two-edge left/right cases as decoded
by subfunction DECODE. Processing will be of
edge set parameters.

writes a last face record to the active face
list.

calculates the proper index into the AMAP and
NAMAP arrays, based upon face number.

is the third part of a three part group that
modifies the data in a disk file. This part
closes out those buffers and files that the
first two parts may have used.

calculates the 3-D fading coefficients and
colors for all moving models in the data base.
closes out the buffers and files that have been
modified by submodule MODIFY.

computes the model/object count for 3-D face
group; generates a list of model numbers in
ascending order and computes object counts for
each model in the group.

second of a three part group to modify data in a
disk file. From the information set up by
MODST2 (index, absolute address, record number
and the data in the record), this submodule will
modify, clean up data, store in as many buffers
as needed, and then write them to the correct
data disk file.

modifies a data file by reading in a buffer of
data, modifying it, and writing it back out to
the disk at its originally read location.
performs the necessary calculations to determine
how much data to be modified should be moved
from the I/0 buffer to the buffer used to modify
the data.

129

48
49

50
51
52
53

54

55
56
57
58
59
60

61
62
63
64

65

Module

Description

MODSET

MODST2

MODULA

MOVE
MULT

NEWBLK

NEWED

NEWPL
NSEDGR
NSOUT
NSRSLV
ORDER
OVERID

PARSEL
PATPRO
PPCNT
PPFPL

PPINP

modifies disk resident data in the same way main
memory resident data is modified.

is the first of a three-part group of modules
that will modify data in a disk file. This
module checks for index out of bounds,
determines absolute address, gets the record
number, reads the file and stores it for MODFY2.
sets the modulation and fading select codes for
each of the three colors in the visible edge
data set.

moves one matrix into another.

multiplies two matrices and returns the result
in a third matrix.

initializes pointer variables and reads in a new
priority data block when the active block number
is changed; determines the model counts for all
the models in the block.

determines model number, obJject number, terrain
face flags, computes edge control word, puts it
into temporary buffer, and arranges data to fit
temporary active face list.

adds a new point light to the appropriate edge
data word and updates necessary control files.
moves an edge data set from common areas GEN and
EDREL to common area NSEDGE.

moves data from common area NSTABL to common
area PRVP.

receives edges one at a time from NSEDGR and
puts them in a2 table based on priority-right.
generates a list by ordering incoming values in
ascending order.

overrides the case type results from the DECODE
subfunction when valid edge, collapsed edge, and
certain flag conditions are met.

controls the overall selection process of
choosing edge parameters.

calculates delta I - JN dependent coefficients
for output to the video processor.

processes separation plane data and generates
the counts for a specified group.

assigns the absolute face priority numbers based
on data from the active face list, active model
list, used model/overlay numbers list, the
priority data memory and the universal objects
relative priority list.

interfaces between data as stored on disk and as
needed by the FRAME2 and FRAME3 submodules
through the priority processor submodules; saves
priority information for universal features.

130

66

67
68

69

70

71

72

73
74

75

76
77
78

79

80

81

82

83
84

Module
PPLIST

PPMSG
PPSORT

PPUOL

PRAPLU

PRAREA

PRAUPD

PRCLR
PRDMP

PREDGR

PREEFS
PRELOD
PREPD

PRESEL

PRFBKU

PRINIT
PRIPRO

PRIRSV
PRNEFS

Description

creates various lists by cycling through the
active face list and recording the appropriate
information; generates the highest priority
count for faces at given terrain face values.
displays a specified error message.

generates an ordered list of keys so that the
corresponding values are in ascending order.
creates the universal obJects relative priority
list used in assigning absolute priority numbers
in submodule PPFPL.

updates the next active priority list based on
the next ordered edge data for the current
raster line.

calculates the area in the raster line element
to the right of the edge whose J-left intercept
intersects a top or bottom boundary of the
element.

updates the element area calculation for each
valid edge in the edge load store.

clears the memory pointers and flags.

writes out the data from designated common areas
generated in FRAME II.

dissects the edge flag word and stores the
unpacked flags and data in individual data words
contained in common area PREDGR.

processes edges tagged as an equal edge by the
edge selection.

cycles through the top two priority level of
edges in the edge select memory.

determines the two or three highest priority
levels extant in the active and transition
priority list.

selects an additional edge which intersects the
current raster line element for each priority
level currently retained in the transition
priority list.

simulates the read-write function of the
fallback memory.

clears the processing flags and main memory
areas.

cycles through the active face list to form the
used overlay numbers/models numbers list, the
active models list, the active universal obJjects
range/count lists, and counts the number of
faces at each possible terrain face range value
by use of other submodules.

calls the submodules that constitute the
priority resolver process.

categorizes the non-equal edge sets in the edge
load store into three cases for modification.

131

85

86
87

88

89
S0

91
92

93
94

95

96
97

98

99

100
101

102

103
104
105

Module

Description

PRNXTO

PROUT
PRSTOR

PRTPLU

PRVIS
PTCAL

PTCLR2
PTLGEN

PTLSIT
PUT

PUT2

PUTCLR
PUTSET

PUTSTZ2

RAMOUT
RAMSET
RDBLK
REED

REED2
ROTMAT
RSTPED

performs face modification for equal A edges and
equal B edges and then ascertains if the A edges
are next to the top/bottom of the raster line.
gathers data to be stored in common area PRVP
for later use by the video processor.

transfers the edge data to be processed from the
edge select memory to the edge load store
memory.

selects from a large number of edges the eight
best edges that intersect the current raster
line at a single element.

prints the contents of the common area PRLD.
obtains point light relative addresses, light
characteristics, number of lights per string,
rotates light vertex to proper window, and adds
new point light to edge data word file.

outputs and clears buffer.

simulates the point light generator for use with
the camera station.

retrieves FRAME2 point light data from the disk
and places it in a temporary disk file.

writes data out to a disk file in such a way
that the disk access is transparent to the
calling program.

transfers data to system disk after arranging
data to exactly fill a disk sector.

clears the output buffer to the disk file.
clears the output buffer to be filled by
subsequent calls from the PUT submodule.

sets a pointer to the beginning of the storage
buffer, checks to see if all locations in the
buffer have been processed, and if so, clears
the entire buffer.

transfers color intensity data generated in the
FRAME III process to buffers and then to the
display device.

initializes the display device.

reads in a new priority data block according to
block type and block number.

regulates the reading of data off of a disk file
by calling the system subroutine SYSIO and
keeping track of and updating the sector and
word pointers,

reads data supplied from SETRD2 into buffers
equal in size to a disk sector.

creates a direction cosine matrix via attitude
rotation.

retrieves a number of edge data word sets for
processing by the Edge Generator submodule.

132

106
107

108

109
110

111

112

113
114
115

116
117
118

119
120

121
122
123
124
125

126
127

128
129

Module

Description

RSTPLT
SAVELT

SCGEN

SELDMP
SETFIL
SETRD

SETRDZ2

SINGS
STPED
STPLT

TB2
TMULT
TRANS

TSBNST
TSBSNO

TSDBN
TSEA
TSEDA
TSEDGR
TSEMOV

TSESP
TSINIT

TSLOD
TSLODS

retrieves point light data words from a buffer
and stores them in common.

takes point light data from a common area and
transfers the data to another area for later
storage.

sets up the necessary data files and organizes
the environment data for the other modules;
performs the executive function of controlling
the other modules in the task.

dumps all values of the module's variables to
the line printer.

sets up the disk data files by using the system
subroutine OPENW to open the files.

sets up the necessary pointers to begin reading
the appropriate disk file; performs the initial
read; saves the sector number and relative word
address in the sector for subsequent calls by
the submodule REED.

determines an absolute address based upon
relative address and resolution; reads the file
into a buffer.

processes single edge cases as decoded by
subfunction DECODE,

retrieves a number of edge data word sets for
processing by the Edge Generator submodule.
retrieves point light data word sets for
processing by the point light generator
subroutine.

processes two-edge top/bottom cases as decoded
by subfunction DECODE.

multiplies a transposed matrix by a second
matrix and returns the result in a third matrix.
transposes a matrix and returns the result in
another matrix.

determines texture/shading base number set type.
calculates texture/shading base number
calculation.

calculates base number per element change.
calculates texture element area.

detects edge of texture area.

reads next edge into texture/shading routine.
moves pattern word data to current edge common
area.

performs all texture/shading calculations for an
element set.

initializes texture/shading calculations at
start of line.

calculates level of detail.

selects texture level of detail.

133

130
131
132
133
134
135

136

137
138

139
140

141
142
143

144
145
146
147
148
149
150

Module

Description

TSMUX
TSPINC
TSSHAD
TSTXMD
TTMUL
TVEC

UPDATE

VEC
VIDOUT

VIDPRO
VPAINC

VPCFC
VPFADE
VPIFLD

VPILN
VPLNDL
VPLTC
VPMLF
VPSIMP
VPTEX
VTP

multiplexes texture/shading output.

generates texture pattern~incrementer output.
processes shading information.

processes texture modulation, smoothing, and
summation functions.

multiplies two transposed matrices and returns
the result in a third matrix.

multiplies a transposed matrix and a vector and
returns the result in a second vector.

updates the common data file by using the
interval submodule SETFIL and modifying the data
for use by FRAME3.

multiplies a matrix and a vector and stores the
results in a second vector.

invokes the submodule RAMOUT to supply data to
the display device for each raster line as the
processing for that line is completed.

calls the subfunctions that constitute the video
processor routine.

compresses the colors and subtended areas of two
edge data functions, A and B for each line
element over the interval that the given edge
word is active; a third color C is included for
the remaining area.

combines face colors using current element
areas.

determines coefficients, horizon flags, and
multiplies 3 areas in current element.
initializes the fading range for ground and sky
for the upper left corner, transferred only per
field line.

updates pointers and resets fade ranges for a
new line, and determines horizon flag.
simulates the directional illumination envelope
associated with landing lights.

retrieves the color and area of any point light
in current element.

merges light colors with face colors and puts
final color into output line buffer.

processes the simplified video processor
functions.

provides the interface between the video
processor and the texture generator.

performs channel assignment on faces, clusters,
and regions and rotates vertices; in Frame I it
is used to determine whether regions/subregions
will be visible.

134

Module
151 WINDOW

152 WNDDMP
153 WRTFPL

Description

calculates the window boundary constants used to
determine whether data will be visible in the
view window.

dumps header data for each edge crossing within
user specified values.

dumps the absolute face priority list to an
output file.

135

Appendix C

Collected Data on Variables

136

Appendix C

The data in this appendix represents the data collected
regarding the type and quantity of each type of variable in
each of the six main programs. It is arranged in six
tables. Each table has six columns as follows:

SYMBOL name of the variable as found in the programs
T indicates the type of variable as follows:
C Character
I Integer
L Logical
R Real
S size of the variable in bytes
DIMN dimension of the variable
LOCATI location of the variable in memory. This will

be the name of a COMMON block or a program if
it is local.

TOTAL total memory required for the storage of this
variable

137

- - -

IABSAD
IARG
IARG
IB

icC
ICON
iD
IELAP
IFACN
IFACT
IFN
IMIN
INDAFN
INX
IPROC
IREC
IRFC
IRX
ISEC
ISTAT
ISTAT
ISTIM
IT
ITINM
IUP
IX

J1i
JARG
JPROC
JREC
JRFC
JX

K

K
KARG
LARG
LEFT
LPCT
M
MSKE
MSKL
N
NMED
NNSEC
NOEDG
NOSET

S DINMN#

- -

T N N e N N e

w
(1)
O
P =0

1200

4096

10000

u&hhu&o&n&h.&h-&nbn&.bn&-b.hnbn&h-ﬁ-&.&.&b.&.&&.&&-&p&.ﬁ#w.&.&#w@&#.&AA#A.&A@@A.&AI

PR PR PPRPRERRPRPREBRERRERERPRPRPPPEPAPORPORRRPERERUOPRE

LOCATI TOTAL#
BFRM 1280
FACCOM
MODSET
FACCOM
FACCOM
FACCOM
MODSET
MODSET
MODSET
SETFIL
FACCQOM
FACCOM
FACCOM
FACCOM 4800
FACCOM 4

8132

T ORI

[
B
»
o
B O

FACCOM 4
FACCOM 4
FACCOM 20000
FACCOM
MODSET

BFRM 2
MODSET
MODSET
FACCOM
MODSET
SETFIL
FACCOM
FACCOM
FACCOM
MODSET
BFRM
MODSET
MODSET
MODSET
MODSET
MODSET
MODSET
FACCOM
MODSET
MODSET
MODSET
MODSET
MODSET
FACCOM
FACCOM
FACCOM
MODSET
FACCOM
FACCOM
FACCOM
FACCOM

e

N

B BB DADE LA RBEEDDRADRRRARRAPEBROLNRNBARDRROARNAR

Table C-1: Variable List
for FACCOM
(Sheet 1 of 2)

138

SYMBOL T S DIMN# LOCATI TOTAL#

NQwW I 4 1 FACCOMNM 4
NSEC I 4 1 FACCOM 4
RSLTN I 4 6 MODSET 24
TBLK I 4 S MODSET 20
XXX R 4 1 FACCOM 4
_________________ TOTAL
SIZE 236
DIMN 19,290
TCTAL 48,97€

Table C-1: Variable List
for FACCOM
(Sheet 2 of 2)

139

SYMBOL T S DIMN LOCATI TOTAL Table C-2: Variable List
“““ S T TTTT TTossms TETTs for FRAMEA1
A Ia 1 LNGLAT 4 (Sheet 1 of 10)
ACTREG I 4 281 ABLIST 1124
AK R 4 1 FIXDT 4
ATT R 4 3 FRM1 12
AZINM R 4 1 FRM1 4
BLKAMT I 4 8 LOD 32
BLNFLG L 4 1 OPTNS 4
BUFF I 4 320 BFRI 1280
BUFF I 4 320 BFRM 1280
BUFF I 4 320 BFRO 1280
c I 4 3 MMFAD 12
C I2 1 VTP 2
Cil R 4 1 FIXDT 4
C1l R 4 1 ROTMAT 4
c2 R 4 1 FIXDT 4
c2 R 4 1 ROTMAT 4
Cc3 R 4 1 FIXDT 4
c3 R 4 1 ROTMAT 4
C4 R 4 1 FIXDT 4
CIl R 4 1 WINDOW 4
cJ R 4 1 WINDOW 4
CLC I 4 18 FR1D 72
CNV R 4 1 FRAME1 4
COLOR R 4 768 TABLS 3072
cQsS R 4 1 LNGLAT 4
CsSI I2 6 FR1D 12
CTHEP R 4 1 VTP 4
CTHETA R 4 1 VTP 4
cV R 4 1 FRM1 4
CW R 4 1 FRM1 4
D R 8 1 FRAME1 8
D R 8 1 LNGLAT 8
D.AA I 4 1 FADCHMP 4
D.AA I 4 1 FRAME1 4
D.AA I 4 1 LOD 4
D.AA 14 1" MMFAD 4
D.AA I 4 1 MODSET 4
D.AA I 4 1 MULT 4
D.AA I 4 1 PUT 4
D.AA I 4 1 VTP 4
D.AB I 4 1 FADCMP 4
D.AB I 4 1 MULT 4
D.BA I 4 1 FRAME1l 4
D.BA I 4 1 LNGLAT 4
D.BA I 4 1 MULT 4
D.BB I 4 1 FRAME1 4
D.BB I 4 1 MULT 4
D.BC I 4 1 FRAME1 4
D.CA I 4 1 FRAME1 4
D.CA I 4 1 MULT 4
D.CB 1 4 1 FRAME1l 4
D.CC I 4 1 FRAME1l 4
DF R 4 1 MMFAD 4

140

SYMBOL

DF2
DF2MAX
CFG
DFP
DFS
DIR

E

E
EDGFLG
ELEV
EOF
ERRMSG
F
F1RFLG
FADFLG
FILE
FOPG
FOPS
FR1EDB
FVPG
FVPS
FWPG
FWPS
GND
HAZG
HAZS
HF
HFQV

I

- -

I

Io

Iop

IA
IABSAD
IABSAD
IAFW
IARG
IARG
IARG
IARG
IARG
IARG
IBEG
IBFLG
IBNUM
ICHAN

-3

H R HAEREARHAHEMNTODHNHARMHERHEHEAR DRS00 HDDICCHHR DO D0 DDV OD

A AL DL LLLEDLDLEDBELLEADERALELDLBEDBNONNNDELELDELRLPLPORLRBANEERRBERNBLEBDBR D

S DIMN

1
|
]
t

168

230

PR PR PP PRPREPRRERRPRPRPPRERPHPEPREPEEPLPREPODOUOORPRPEPEPE,PARPEPNRPRPEREPRPRERRRPPRPRARRERRRR

LOCATI

FADE
FADCNMP
FADCMP
CPFM
FADCMP
DRCT
FRAMEL
LNGLAT
OPTNS
FRM1
REED
MISC
VTP
OPTNS
OPTNS
FRAMEL
VPEFHM
VPFHM
FR1D
VPENM
VPEFM
VPFHM
VPEM
VPFM
VPFM
VPFM
WINDOW
FRM1
FRAME1L
LNGLAT
MODSET
MULT
PUT
REED
VTP
FRM1
WINDOW
ABLIST
MODSET
SETRD
FRAMEL
LOD
MODSET
PUT
REED
SETFIL
SETRD
FRAMEL
VTPUT
FRAMEL
GPTNS5

337

921

L R N T S SN Y O St S St S St O I N LT SR S AT AT AT S s S S AT S SN AL SR S B O i R U S S N S

Table C-2: Variable List
for FRAME1
(Sheet 2 of 10)

141

SYMBOL
ICHASS
ICHFLG
ICOSYS
ICT
IEADUF
IEF
IELAP
IEND
IFADUF
IFQGC
IFXLOD
IGNDC
IHAZC
IHLD
IK
ILOD
IMIN
IMODEL
INCT
IPA
IPB
IPROC
IPROC
IPRQC
IPROC
IRC
IREC
IREC
IREC
IRFC
IRFC
IRFC
IRFC
IRX
IRX
ISEC
ISKYC
ISPF
ISPL
ISTAT
ISTAT
ISTAT
ISTAT
ISTAT
ISTAT
ISTIM
ITADUF
ITEMP
ITIM
IU

Iup
IUP
IUP

HH A H H HHHHHHHHHRHHHMHHHR AR R SRS
P N N N N T T N T N T N N N O L N O N S SN S S R S

S DIMN

ey
3]

Hvurop(oraw(»r*Hnah-wrawraujwlarawnaraw(ﬁUlwrﬂrhprAFAH»aO\H»AF»H(»u)wrﬂu)Hk»H|~rawb»haw

LOCATI TOTAL

FRAME1
FRAME1
UNFDT
CPFM
OPTNS
CPFM
CPFM
FRAME1 256
vTP

VTPDT
FRAME1
VTBDT

VTPDT 2
FRAME1
FRAMEl
MODSET
PUT
REED
SETRD
FR1D
BFRI
BFRM
BFRO
MODSET
PUT
REED
SETRD
MODSET
SETRD
FRAME1
CPFM 1
vTP

VTP

FRAME1
MODSET

PUT

REED

SETFIL
SETRD
FRAME1 1
UNFDT
FRAME1
FRAME1 1
UNFDT
MODSET

PUT

REED

=
-
wn
Q
H
P N N R N N N T N

N e
[NI N N N N O G O N N ISEN]

NN
o O

LADAANLANDADLLADADBBEBND A LR RSB

Table C-2: Variable List
for FRAMEA1
(Sheet 3 of 10)

142

SYMBOL

-t - -

KLDREZ
KLE
KLM
KLMREP
KLOD

H:U:J”:UZJ”:UZIm:UZJZ:UZJHDﬂkiHlﬂderﬂPiHrﬂhiHDﬁF4H)ﬂk1HtﬂhiHlﬂthlﬁFiH)ﬁZJHrﬂkiHlﬂkiHlﬂI -3

S DINN

B N N N N T N S N - QN T S S N N O T T T O R R Y QY N N N A N O N
PR R R R REPEORR RBRERARRMRRRPRRRARPRPRPRPPRPRPERPRRERRRP,PRPRPRERPRPREPPERPERPRRERSOON

LOCATI

- - -

BFRO
FRAMEL
LNGLAT
LOD
MULT
FRM1
WINDOW
MODSET
PUT
REED
MODSET
PUT
REED
SETRD
LOD
JWIN
JWIN
MODSET
MODSET
REED
FRAMEL
MODSET
MISC
MODSET
PUT
REED
FADCMP
FRAME1
MMFAD
MODSET
MULT
PUT
REED
LoD
MODSET
PUT
VPFM
FRM1
FIXDT
FIXDT
FIXDT
FRM1
FIXDT
FIXDT
VTPDT
VTPDT
VTP
VTPDT
VTPDT
VTP
FIXDT

TOTAL

Y Y S N L

N N N N N N T O N N T N (N I N O I N N N R

Table C~2: Variable List
for FRAME1
(Sheet 4 of 10)

143

KLOR
KLORRF
KLTAB
KLX
KLY
KLZ
KM
KMAX
KMU
KMV
KMW
KN
KPU
KPV
KPW
KRASH
KS
KSC
KSCX
KSCY
KsSCZ
KSF
KSKY
KUVW
KV

KV

KW
LARG
LAT
LEFT
LEFT
LEFT
LN

LN

LO

Lo
LOCFLG
LODMOD
LONG
LPCT
LPCT
LPCT
LSP
LSP
LST
LST
LTPARMNM
LUCHMN
LUREG
M

M
MAXRNG
MGKL

DOHHHAHHIODHIHHHHICCOHIIHR A HHAHIIHRDODDD0DDX0DITIHDDIHIDIIDODOHIDIIDNID
BDANDLLER DL DLDLALEOLDLBABELDE LD OLLDDEDLDLRBEDLBDBLEBEBNBARBEDRBBRE DB DB BB

S DIMN

281

HFOFRRHERPORPRPRRPPEPPRPRPPRPEPPLPREPLPREPPEPPRPRPEPPRPEPRARRPRERPRPPROPRPRPPRERPRPPEPRBPRPPEPEERAOMP

LOCATI

FRAME1
FADCMP
FIXDT
FIXDT
FIXDT
FRAME1
FIXDT
FIXDT
FIXDT
VPFM
FRM1
VTPDT
VTPDT
VTPDT
VTPDT
VTPDT
VPFM
FIXDT
FRM1
VTPDT
FRM1
MODSET
LNGLAT
MODSET
PUT
REED
MISC
MISC
MISC
MISC
OPTNS
OPTNS
LNGLAT
MODSET
pPUT
REED
MISC
MISC
MISC
MISC
TABLS
FRAME1
FRAMEL
PUT
VTP
MISC
vTP

=

N

1126

(N
BRONL L DR DLELELPEBRE DL PLERPBAEPRPE LR RLEPEDLPDBEADERNENDEDERE DD BB ERDDB DS

Table C-2: Variable List
for FRAME1
(Sheet 5 of 10)

144

SYMBOL

- - -

NG

NL

NL
NLOD
NNSEC
NOB
NOEDB
NP

NP2
NSEC
NSXNVX
NSYNVY
NSZNVZ
NV

NVP
NVP
NVX
NVY
NVZ
OFF

P

P1

Pl

P2

P2

P3

P3

PF

PH

T

WWWWWWWZWHWW:UWHWWWWHZJWHHHH:UHZ'JIJWJUSUZJmZJHZJHHHHHZJH["‘ZUN')UW””

NN
gy

Hpar*woar»r'HrarAHfaraw\pu)Hnar*HoﬂraP»ar‘HtakamrAkawoAPawraraHtar&wnartmr4p~m

LOCATI TOTAL

MISC 32
FIXDT 4
VTP 4
VTP 4
MMDAT 84
MMDAT 84

FRAME1 36
OPTNS 4
FRAME1 2
WNDW 36
MODSET

PUT

FRAME1L
FRAME1
FIXDT

FIXDT

FIXDT

FIXDT

VTP

VTP

VTP

VTPDT

VTPDT

VTPDT

WNDW 3
FIXDT
FIXDT
VTPDT
FRAME1
FRAME1
FR1D
VTP
VTP
FRAME1
VTP
VTP
VTP
VTPDT
FIXDT
FIXDT
VTPDT
VTPDT
VTPDT
LOD
VTPDT
FADCHMP
MMFAD
FADCHMP
MMFAD
FADCHMP
MMFAD
VTP
ROTMAT

P N SN N

PPN O N S N QT N N TN SR N NN N 8

W W e
I N N N N N N N I ARAN N

Table C~2: Variable List
for FRAME1
" (Sheet 6 of 10)

145

SYMBOL
PL
PREM
PS
PTLFLG
R
R12NM
R2
RADCNV
RADCNV
RADCNV
RB

RB

RBF
RBOR
RE

RE
REGCT
RERG
RF

RF2

RG

RL
RMAX
RMID
RMRERF
RMRERG
RNG

RP

RPC
RPCX
RPCY
RPCZ
RPMM
RPP
RPX
RPY
RPZ

RR

RRB

RS
RSLTN
RSLTN
RT
RTST
Si

52

S3

SG

SIN
SKY

SN

SN

SSW

("ZUZJHZJZU;U;U:U:U:UHHZJ:U;UIJ:DZJSORJ:UZJ':OZJZUWZUSUBJJU;UZU:U:U:UHZJHZ!I":UZJZ)ZJ;UQU:U?JF‘:UZJZJl—i
&A&NA.&»AA-&\AJSA-D&h&&h@k.ﬁ&&h&&&bkﬁ&&#ko&&&.&o&hu&hn&o&#@.&&.&&##\.&l

S DIMN

U\O\HPPHHH(A)L\JHHHQNHHPHHPHHHHPHHHHHHHHHHPHHP\DO\

N QWRE MR

w

LOCATI TOTAL

- - - - - - -

VTP 24
FRAME1 36
ROTMAT
OPTNS
VTPDT
FRAME1
VTP
LNGLAT
ROTMAT
WINDOW
FRM1
VTPDT
VTPDT
VTP
FRAMEl
VTP
FR1D
VTP
VTP
VTP
VTP
FRM1
VTP
FRAME1L
VTP
VTP
VTPDT
FIXDT
FIXDT
FIXDT
FIXDT
FIXDT
FRAME1
VTPDT
VTPDT
VTPDT
VTPDT
FRM1
VTPDT
VTPDT
MODSET
SETRD
FRM1
VTP
ROTMAT
ROTMAT
ROTMAT
VTP
LNGLAT
VPFM
FRM1
VTP
SSWTCH

N O N N

-

- -
DA RABNNDBERERENND B DL R DD DB PS

N

N I) QY N S N A N i R

[y
N -
[

Table C-2: Variable List
for FRAME1
(Sheet 7 of 10)

146

TBLK
TBLK
TBLK
TBLK
TEXFLG
™1
TM2
TMP
TXTAB
UFAaD
UFC
UFDC
UFPROC
UNITM
UOR
urPx
uPY
upZ
URPRBR
Uyvsws
UVsSWsP
Uvw

uX
UXXOR
9 4
UYYOR
uz

uz
UZ2Z0R
v

v

VF
VFoVv
VOR
VORNEG
VORPOS
VP

VPN
VPX
VPY
vP2

vX

VX1
VXXOR
vY

vyl
VYYOR

HHHHPHPHH\D&)HHHPH&)HHHHHPHH\D\D\DD—‘HH!—'&)\DH\D(A)U\L\)PLD\DHUIUIU\LHHOJPHH(D

LOCATI TOTAL

- - - -

FIXDT 12
FIXDT 4
FIXDT 4
FIXDT 4
FRAME1 24
ROTMAT 4
MODSET 20
PUT 20
REED 20
SETRD 20
OPTNS 4
FRAME1 36
FRAMEL 36
VTP 4
MISC 12
UNFDT 84
UNFDT 12
UNFDT 36
UNFDT 4
LNGLAT 36
VTPDT 12
FIXDT 4
FIXDT <
FIXDT 4
VTP 4
FIXDT 36
VTPDT 36
FRM1 36
VTPDT 4
VTP 4
VTPDT 4
YTP 4
FRM1 4
VTPDT 4
VTP 4
VTP 2
VTPDT 12
WINDOW 4
FRM1 4
VTPDT 4
VTP 4
VTP 4
FRM1 24
FRM1 36
FIXDT 4
FIXDT 4
FIXDT 4
VTPDT 4
VTPDT 4
VTP 4
VTPDT 4
VTPDT 4
VTP 14

Table C-2: Variable List
for FRAME1
(Sheet 8 of 10)

147

SYMBOL

vZ
vzl
VZ2Z0R
WND
WNDFLG
WOR
WORNEG
WORPQOS
WPX
WPY
wpP2Z
WR

wS
WVP
wX
WXXOR
WY
WYYOR
w2

w2
WZZOR
X

XM
XOR
XP
XPNFX
XTHMP
Y

M
YOR
YP
YPNFY
2

2

2C

2G

2N
ZMIN
2MM
20R
2P
ZPNFZ
2S
2SEA
2VP

DOVDVVDDDVVDOLI VOV DDV IV DIDDVDID OOV DDODDDIOC DOV DD]
OO OB LA LOLDPODL AL DADARDALPAADLDAPLRDADRDLELARRRLEALARLALBLDDA LD

N
PR PR P RRRPRPRPREPRPRPPRPPLPPPORRPREREPPLPREPRPPREPRERPEPRORPEERPEREREPRR

WrEP PP

LOCATI TOTAL

VTPDT
FRAMEL 3
VTPDT
VTP
VTPDT
VTP
FRM1
VTPDT
VTP
VTP
FRAMEL
VTP
vTP
VTP
FIXDT
VTP
FRAME1
VTP
VTP
VTP
LNGLAT
VTP
FADE
FADCMP
FRAME1
FADE
FRAMEL
vTP
VTP
VTP
FADCMP
WNDW
FRAME1L

[s2)
COORBDADEA LR DPOLBEADRDPODLRDEALADLDERDLELEPLPROBDDDPLEPLBRPEBRNLD DR

Table C-2: Variable List
for FRAME1
(Sheet 9 of 10)

148

TOTAL
stze 1,90€
DIMN 9,812
TOTAL 35, €44

Table C-2: Variable List
for FRAMEA1
(Sheet 10 of 10)

149

SYMBOL
ABSFAN
ACLIST
ACTREG
AEXFL
AFLG
AFN
AFNO
AK
ALPA
ALPH
ALPHA
AMAP
ATT
AZINM
BE
BRETA
BL
BLND
BLNFLG
BMS
BRDFLG
BUFF
BUFF
BUFF
BUFF
BUFF
BUFF
BUFF
BUFF
BUFF
BUFFT
BUFFV
C

CF1
CF2
CKA
CKB
CLD
CLR
CLRF
CLUF
CLUST
COLOR
COLTAB
CTHEP
CTHETA
cv

cw

D

D.AA
D.AA
D.AA
D.AA

]

HHDCHMAA

Hiﬂh*hlmtnzlw:nb4m04r‘Hedsz:o:erﬂhiHr4h1H|4r4h<Ht4k1r VCHDODDOVAHRDDDTAOD

-—— - -

P N AL I o o ol ol o

4096
1024
4096

15

15
160

-
wuo

N
'
PR RPpRPEPPEPPRPPODEIPOORPP, PR

LOCATI TOTAL#

- . - e

F2WRK 8192
F2WRK 128
FRAME2 S12
F2WRK S12
FACPRO 4
FACDT 4
EDGCAL 4
FIXDT 4
FMOD 4
FEP 4
FEPDT 4
F2WRK 2248
FRM1 12
FRM1 4
CPLITE 4
FEPDT 4
CPLITE 4
FACPRO 4
OPTNS 4
CPLITE 4
EDGCAL 4
BFRI 16384
BFRM 4036
BFRO 16384
DLCAL 60
EDGCAL 20
FACOUT 20
FACPRO 60
FRAMEZ2 640
PTCAL 40
FACPRO 60
EDGCAL 20
vTP 2
CPBLND 4
CPBLND 4
CPLITE 4
CPLITE 4
CPBLND 4
CoL 6
COL 6
TRAMEZ2 4
FRAME2 2
TABLS 3072
COLT 40
VTP 4
vTP 4
FRM1 4
FRM1 4
FMOD 4
coL 4
CPBLND 4
CPFADE 4
CPLITE 4

Table C-3: Variable List
for FRAMEZ2
(Sheet 1 of 14)

150

SYMBOL

DLFLG
DUPEDG
ECW
EDGFLG
EDGMOD
EDW

EG
EGFLG
ELEM1
ELEM2
ELEML
ELEMLX
ELEMR
ELEMRX
ELEMT1
ELEMT2
ELEV
ERRMSG
ETOL
EXF
EXFL
EXT

F

F
F1RFLG
FACE
FACE
FACFLG
FACL
FACR
FADFLG
FILE
FILE

HoH o MM

m:nr'HiﬂhdHr*F|421H04h4w|42)m:027m:n:)m:Ur‘Htﬂr‘r'wl“r‘wt‘r‘H»4r4H»4h4Hoﬁ

LOCATI TOTAL#
EDWOUT
FRAME2

MULT

VTP

CPBLND
CPFADE

MULT

FRAME2

MULT

PTCAL

FRAMEZ2

MULT

FRAME2

MULT

PTCAL

FRAME2
FRAMEZ2
FACQUT
FACOUT

CPFM

FACPRO

FEPDT

ouT 1440
OPTNS

FEPDT

EDWQUT
EDGCAL
FACPRO

FEP

FEP

FEP

FEP

FEP

FEP

FEP

FEP

FRM1

MISC

FMOD

EDGCAL

F2WRK)
EDGCAL
CPFADE
vTP
OPTNS
DLCAL
FACPRO
FACPRO
FACDT
FACDT
OPTNS
INIT2
UPDATE

U N N N N N S S L

P.hllb'bitﬂ.biiﬁob41$-h¢bhvbJkéubC)&Ji& [SN

' ,
CodbLPENNAEN

Table C-3: Variable List
for FRAMEZ
(Sheet 2 of 14)

151

FORIP
FORITF
FORJ
FORJ
FORJ
FORJ1
FORJ1
FORJ1
FORJR
FORK
FORK
FORK
FORM
FORM
FORNED
FORNF
GAMMA
HFOV
HTOL

Pt bt M

I0

I1
IABF
IABSAD
IABSAD
IAC
IACLF
IARG
IARG
IARG
IARG
IARG
IB
IBFLG
IBITWD
IBLC

LOCATI TOTAL#
FACPRO
FMOD
MODST2
NEWED
NEWPL
PuUT2
REED2
DLCAL
FACPRO
FACPRO
FMOD
INIT2
MODSTZ2
PUT2
REED2
FACOUT
DLCAL
EDGCAL
FACOUT
EDGCAL
PUT2
EDGCAL
FACPRO
FEP
FRM1
FEP
EDWOUT
FACPRO
FMQOD
FRAME2
MODST2
MULT
NEWED
NEWPL
PUT2
REED2
VTP
FRM1
FRAME2
F2WRK
MODST2
SETRD2
F2WRK
RF =3
MODST2
PUT2
REED2
SETFIL
SETRD2
FACPRO
VTPDT
NEWED
FACPRO

N T N N N S N N N N N N i N A e I I I NN N

Y T G T Y N N N R W

' Table C-3: Variable List
for FRAME2
(Sheet 3 of 14)

152

SYMBOL
IBLK
IBLKNO
IBLND
IBLTYP
IBMBND
IBNF
IBP

IC

IC

IC
ICHAN
ICHANT
ICHASS
ICHFLG
ICL
ICLCT
ICLFAD
ICOLN
IC0OSYS
ICT
IDL
IDL1
IDLAD
IDRLAD
IDRLD1
IDUM
IEADUF
IECW
IEDGAD
IEF
IEGSAD
IELAP
IEXTF
IF1
IF2
IFACAD
IFACPR
IFADUF
IFATYP
IFBN
IFF
IFOGC
IFXLOD
IGNDC
IHAZC
IHIB
IK
ILBC
ILFBND
I1LOD
IMIN
IMODEL
IMODNO

HHHHH”HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHF’["F’HHHHHHHHHHH [|

LOCATI TOTAL#
FACPRO
BLSDT
COLDT
BLSDT
FEP
FEP
CPBLND
FRAMEZ2
NEWED
NMEWPL
OPTNS
DLCAL
VTPDT
VTPDT
FRAMEZ2
FRAMEZ2
FRAME2
COLT
MISC
CPFADE
FACPRO
DLCAL
DLCAL
RBHDT
DLCAL
COL
UNFDT
ouT 1440
RBHDT
MISC
EDGCAL
FRAMEZ2
COLDT
COLDT
CQLDT
RBHDT
FACOUT
UNFDT
FACOUT
FRAME2
COLDT
CPFM
OPTNS
CPFM
CPFM
FEPDT
VTP
FEPDT
FEP
VTPDT
FRAME2
VTPDT
FACOUT

N
P T S N N N SO N N N O NSy N

BB OB NP D PP

T
P AL LB LBBRNNNANNLELA LD BENNNDL L

Table C-3: Variable List
for FRAMEZ2
(Sheet 4 of 14)

153

SYMBOL

- —— = -

INFV
INFV1
INFV1P
INFV2
INFV2P
INQFED
INXTBN
IOBJNO
I10s

IP

IP
IPLCW
IPROC
IPROC
IPROC
IPROC
IPTLAD
IPTLT
IR
IRBC
IRCLN
IREC
IREC
IREC
IREL
IRELFN
IREP1
IREP12
IREPZ2
IREPL
IREPR
IRFC
IRFC
IRFC
IRFC
IRFNO
IRN
IRPLAD
IRSLTN
IRTBND
IRX
IRX
ISEC
ISFPTR
ISKYC
ISPF
ISPL
ISTAT
ISTAT
ISTAT

- - o -

®
O

LOCATI TOTAL®#

- - - - - - -

Lo

VTPDT 2
FACPRO

FEP

FEP

FEP

FEP

FEP

FACPRO

BLSDT

FACOUT

COLDT

DLCAL

FRAMEZ2

QuT 320
MODST2
PUT2
REED2
SETRD2
RBHDT
COLDT
BLSDT
FEPDT
CLUSPR
BFRI
BFRM
BFRQO
BLSDT
FACOUT
FEP
FEP
FEP
FEP
FEP
MODST2
PUT2
REED2
SETRD2
FACPRQO
RBHDT
PTCAL
NDXTBS 2
FEP

MODST2
SETRD2
FRAME2
CLUSPR

CPFM 1
VTP

VTP

FRAME2

INIT2

MODST2

DB ANDPELRODLBANPL LD AL LEDA LD

W ww
NN

R SR S

DB BBABNDLE DD RDP DAL DADADRD

Table C-%2: Variable List
for FRAMEZ
(Sheet 5 of 14)

154

SYMBOL

P e

ISTIN
ITADUF
ITAFL
ITEX
ITF
ITFR
ITFST
ITIM
ITNAF
ITNED
ITPBND
ITRN
ITXF
ITXRAD
ITXS
ITXTAD
Iy
IUAD
IUF
IUFRAD
IUNFAD
IUP
IUuP
IUP
IVRTAD
Iw

IX

IX

IX
IXCOL
IXX

HHHHD—‘HPHHHHHHHHPHHH(D(D(DHHPHHHHHHHHmHHHHHHwHHHHHHwHHHHH

REED2
SETFIL
SETRDZ
UPDATE
FRAMEZ
UNFDT
F2WRK
MODT
F2WRK
FACOUT
FACPRO
FRAMEZ2
F25UM
F2SUM
FEP
EDGCAL
FMOD
FACPRO
MODT
RBHDT
UNFDT
FRAMEZ
FRAMEZ2
FRAMEZ
RBHDT
MCDST?2
PUT2
REED2
EDGCAL
FACPRO
BFRI
BFRNM
BFROQ
FACDT
FRAMEZ2
DLCAL
FACPRO
FMQOD
FRAME2
INIT2
MULT
FRM1
EDWOUT
FEP
FRAME2
EDWGOUT
FEP
EDWOUT
EDWOUT
EDWOUT
MODST2
PUT2

-
N S S N R N S R N N N N . T NV N S N R VR S R

w
N

w W
B AR AR LEADELEADBAERMDPBPRANN

Table C-3: Variable List
for FRAMEZ2
(Sheet 6 of 14)

155

REARARARARAERARAARXRXRRARAR

KARG
KARG
KEDG
KEDGT
KFAC
KI
KIJ
KIMIO
KINP
KIPIO
KJ
KJMJO
KJPJO
KL
KLDF
KLDREZ
KLE
KLIT
KLITT
KLM
KLMREP
KLOD
KLOR

LOCATI TOTAL#®

- - -

REED2
SETRD2
FACOUT
FEPDT
FRAMEZ
FRAMEZ2
MODST2
FACOUT
FRAMEZ2
FEPDT
REED2
MODST2
MISC
MODST2
PUT2
REED2
CoL
CPBLND
CPFADE
CPLITE
DLCAL
EDGCAL
FACOUT
FACPRO
FRAME2
MODST2
MULT
PTCAL
PUT2
REED2
MODST2
PUT2
ouT
ouT
EDGCAL
FRM1
FIXDT
FIXDT
MODT
FIXDT
FRM1
FIXDT
FIXDT
VTPDT
VTPDT
vTP
VTPDT
QuT
QuT
VTPDT
VTP
FIXDT
VTP

B Y N N R e O N N N I S N S S O S I S

» [

T O N N N N N O S - O A S S o

Table C-3: Variable List
for FRAME2
(Sheet 7 of 14)

156

SYMBOL

LINEL
LINELX
LINER
LINERX
LITTOT
LN

LO
LOCFLG
LODMQOD
LP

LPB
LPCT
LPCT
LPCT
LPFLG
LRGBNOQ
LSP
LST
LTMOD
LTNENF

T

HHHHMHECHRHNCHOCECHAHRDODODDD DO HHAHHHAHIOTODODDDADDUVHDIDOU0O0DD

P R R R R PR R PP RRBEPRPRRPREBPRRPRERPRERERHERRPERRERORPDPRPERPPORPRPRRPEPLOODREERE RSP DP

LOCATI TOTAL#

m
X
O
(@)
s

FMOD
FRAME2
FIXDT
FIXDT
FIXDT
FRM1
VTPDT
VTPDT
VTPDT
VTPDT
VTPDT
FIXDT
VTPDT
FACOUT
CPLITE
MODST2
PUT2
REEDZ2
COLDT
FACPRO
FEP
FEP
FEP
FEP
FEP
FEP
FEP
FEP
PTCAL
MISC
MISC
OPTNS
OPTNS
EDWOUT
FACPRO
MODSTZ2
PUT2
REED2
FACPRO
BLSDT
MISC
MISC
COoL
PTCAL

(S5

N

-
N T N N N N N T G N G N N N N N N N N N O S S (Y - A N O G QN I SN N N S T R

Table C-3: Variable List
for FRAMEZ2
(Sheet 8 of 14)

157

SYMBOL
LTNINH
LTOTEF
LTOTIH
LTPARNM
LUN
LUT

M

M

M
MAXRNG
MAXSIZ
MCHM
MFN
MGKL
MINRNG
MINSIZ
MINSZF
MINUS
MK
MKASG
MKASN
MMPOS
MN

MN

MNE
MNH

MO

MO
MODEL
MODF
MODRT
MOH
MSKE
MSKL
MXEDG
MXLIT

NF1

u
o

LOCATI TOTAL#

- - - - -

PTCAL 4
PTCAL 4
PTCAL 4
TABLS 11264

EDGCAL
NDXTBS 3
EDGCAL

PUT2

VTP

MISC 3
CPLITE

COLDT

FRAME2

VTP

MISC 3
CPLITE

COLDT

EDWOUT

FIXDT

VTP

VTP

OPTNS

NEWED

NEWPL

EDGCAL

NEWED

NEWED

NEWPL

FRAME2
FACPRO

NEWED

NEWED

EDWOUT
EDWOUT

NEWED

NEWPL

CPLITE
MODST".

NEWED

NEWPL

PUT2

NEWED

FACPRO

F2WRK 224
FIXDT
FEP
EDGCAL
EDGCAL
FACPRO
NEWED
NEWPL
VTPDT
FACDT

WMANDMD AL DB LPREDRNANDRAROANNLEANBR

[y
BN DR ADDRPOPLBRR DR DR RRDBRS

Table C-3: Variable List
for FRAMEZ2
(Sheet 9 of 14)

158

SYMBOL

- - -

NOCLFA
NOSR
NP

NP

NP2
NPL
NPLS
NSEC
NSF1
NSXNVX
NSYNVY
NSZNVZ
NTFF
NUF

NV

NVP
NVX
NVY
NVZ
NXF
NXTFST
P

PO

PF

PL
PLCW
PRTAB
PSEU
PTLFLG
R

R

R2

R2

RA2

RB

RB

RBF

T

r‘m:n:lm:n?)ﬂr‘m:ﬂ:)m:nl)m**H:UZ)mF*mtﬁkiminzlHrﬂHtAZ)mF*Htﬂkinimtﬂkiw:U:JNZURJHP*I)w|

®
» O

LOCATI TOTAL#

VTPDT
EDWOUT
FIXDT
COLDT
PTCAL
VTPDT
FRAME2
FRAMEZ2
FRAMEZ2
PTCAL
VTP
VTP
PTCAL
PTCAL
FRAMEZ2
FRAME2
VTP
VTP
VTP
FACDT
FRAME2
VTPDT
FIXDT
VTPDT
VTPDT
VTPDT
FACPRO
FACPRO
VTPDT
FMOD
VTP
VTP
ouT
CLUSPR
FEPDT
OPTNS
CPFADE
VTPDT
CcOoL
VTP
CPLITE
FRM1
VTPDT
VTPDT

I N N N N S S SN P

w ~
DB RABRDRBRBLAONR BN R DD RED

P N G A

Table C-3: Variable List
for FRAMEZ2
(Sheet 10 of 14)

159

RCONST
RDUM
RE
RE2
RERG
RF
RF2
RG

RI

RJ

RL
RMAX
RMAX
RMRERF
RMRERG
RNG
RNG
RP
RP1
RPC
RPCX
RPCY
RPCZ
RPF
RPP
RPX
RPY
RPZ2
RR
RRB
RS

RT
RTAFL
RTST
SG
SLOPE
SN

SN
SNFLG
SPFLG
SSW
STORE
sv

SX

sY

sz
T1ie
TAFLST
TBLK
TBLK
TBLK

T S ¢ W

D PRPEPPRPRPRPPRPORPRPPEPPOPORPPRPRPRPRPRPRPPRERRPPP

294

W

VOO APRrPPPRPOPNRERPRERORPPEP

294

LOCATI TOTAL#
VTP

FACOUT 2
CPFADE
COL
VTP
CPLITE
VTP
VTP
VTP
VTP
EDGCAL
EDGCAL
FRM1
FEP
VTP
VTP
VTP
CPLITE
VTPDT
FIXDT
FRAME2
FIXDT
FIXDT
FIXDT
FIXDT
CLUSPR
VTPDT 1
VTPDT

VTPDT

VTPDT

FRM1

VTPDT

VTPDT

FRM1

F2WRK 1177
VTP
VTP
FEPDT
FRM1
VTP
FACPRO
FACOUT
SSWTCH
FEP
FIXDT
FIXDT
FIXDT
FIXDT
CPLITE
F2WRK 11776
MODST2 20
PUT2 20
REED2 20

S
BB B LN LARBNERNS DB BB RS DD DDA RARDROR

=)

—

|
N
DDA BNDOREBRNOL DL DDDD

-

Table C~-3: Variable List
for FRAMEZ2
(Sheet 11 of 14)

160

- - -

TBLK
TEXFLG
TFFLG
TFFLG
TFFLG
TFR
TFRTMP
THP
TOL
TOL
TOLUP
TXS
TXTAB
U

UlR
U2R
UF1
UFAD
UFC
UFDC
UFFLG
UFPROC
UM
UNSHIL
UNSHIR
UNSHJL
UNSHJR
UOR
UPX
UPY
UPZ2
URPRBR
URTAB
Uvsws
Uvswsp
uvu

ux
UXXOR
uy
UYYOR
Uz
UZ220R
Y

\)

Vi

VipP
V1R
V2P
V2R
VERT
VERT
VFOoV
VGOR

LOCATI TOTAL#

- - -

SETRD2
OPTNS
FACOUT
FACPRO
NEWED
FACDT
FACQUT
VTP
EDGCAL
FEP
FEP
MODT
MISC
FRAMEZ2
FEP
FEP
FRAMEZ2
UNFDT
UNFDT
UNFDT
FRAMEZ2
UNFDT
FEPDT
F-PDT
FEPDT
FEPDT
FEPDT
VTPDT
FIXDT
FIXDT
FIXDT
vTP
FRAMEZ2
FIXDT
VTPDT
FRM1
VTPDT
VTP
VTPDT
VTP
VTPDT
VTP
VTP
VTPDT
FRAMEZ2
FEP
FEP
FEP
FEP
EDGCAL
PTCAL
FRM1
VTPDT

- -

S S e

- 0
N N N S N R

64

MANNBELEPLBNNNRBAABAD

Table C-3: Variable List
for FRAME2
(Sheet 12 of 14)

161

SYMBOL T

WORNEG
WORPOS
WPX
WPY
wp2
WR

W3

WX
WXXOR
Wy
WYYOR
w2
WZZOR
X

XOR
Xp
XPNFX
Y

YOR
YP
YPNFY
2

Z20R
2p
ZPNFZ

IJSOIJ:O:U:UI)DZJ:OZJ!J:UZJZJIJ:U?JZJZUZJIJ;JZJI’:UZJ:U:U:U:U:UZJZJZJWZJZ)ZJ:OJUZ)ZJZJ:U:U

LOCATI TOTAL#

- - - - - - -

™ 7

-0

> X

O~

-3

w i
BN BB RO DR

<

-

o
ﬂ&k#ﬁ#&hh&#b#&h&#&oﬁ&obhhnhob.b?\).b»h»b'&-&ob.h-h-bnbob-&

Table C-3: Variable List
for FRAME2
(Sheet 13 of 14)

162

TOTAL
stz 2,€98
DIMN 34,398
TOTAL 129,37€

Table C-3: Variable List
for FRAMEZ2
(Sheet 14 of 14)

163

AOHM
AoU
AOUK
Al

AlA
AlB
AlE
AlF
A1KFC
A1lM
AlU
AlUK
A2

A2A
A2B
A2F
A2KFC
A20BJ
A3

A3F
A3KFC
AA

AB
ABSFAC
ABSFAN
ABSPRI
ABVBK
AC

AE

AK

AL

ALF
ALFMAX
ALFTL
ALIM
ALL
ALLTL
ALM
ALMTL
ALPHA
AM

aM
AOBJL
AOVERB
AP1
AP1BK
AP1NE

(= o D L
OCOPrP P p DK P P

v v
PR R R RN PRPOOP P DO

N
w
o

40396
256

N
PPRRERPRPPEPRLRONON

LOCATI TOTAL#

- e - -

DECODE
PRFMOD
TSBNST
TSBSNO
TSEMOV
PREDGA
PRESM
PRLD
PRAUPD
‘'PAREA
PRVP
PRVP
PREDGA
VPAREA
VPCFC
PRESM
PRLD
PRAUPD
VPAREA
PRVP
PRVP
VPAREA
VPCFC
PROUT1
VPAREA
VPAREA
VPCFC
VPAREA
VPAREA
EDGORD
GEN
EDREL
PRVIS
VPAREA
TSTXEV
FIXDT
VIDPRO
PLGVP
TSLODS
LOCAL
PRVP
PLGVP
LOCAL
PLGVP
LOCAL
TSLODV
PRFBKU
PRFMGOD
FLGS3
PROUT2
FLGS4
PRVIS
PRFONM

- N
NN ST R S Y W V]

ww
- oo
B HRONSEHAHLOO

360

Table C-4: Variable List
for FRAME3
(Sheet 1 of 32)

164

SYMBOL
AP1P
AP1P2V
APB
APBG
APT
AREAOQ
ARMAX
ATEMP
ATT
AZINM

B

B

B

B

B

BB
BBFO
BBM
BBTM
BCK
BCKOFF
BCOL
BGCNT
BGNDFL
BGNDSL
BGRTFL
BIGNO
BKGB
BKGC3
BKGC3
BKGL
BKGLTP
BKGR
BKGRTP
BKGT
BL
BLIM
BLM
BLNFLG
BLOCK
BM

BM

BNX
BNX
BNXN
BNXP
BP1BK
BR

BRM

BT
BTFO
BTM
BTOP

HHHHHHHHHHHHHO["H:UHHHHHHHHH:UHHHHH:UHHHHHHHHHH:U:U:U:U:OHHHHH|—-l

N
U

N
wn

PP WORPPRPEPPRPOREPEPNDNDPE,OPRP

[

[

. Y
POPRPWORPRPPORPRPPRPODOMAPERPORRPPREFREERRPEDRREPE

LOCATI TOTAL#
FLGS4

PRFONM

PRAPL 51
PREDGA

PRAPL 51
PROUT1
PRAREA

TSEA

FRM1 1
FRM1

DECODE
PRFMOD
TSBNST
TSBSNO
TSEMQV

PRLD

PRFONM

PRESHM 3
PRFMQOD
PROUT2
PARSEL
RAMCOM 2
PRCTRL
PROUT1
PROUT1
MODOUT
PRAREA
PREDGA
VPMLF
VPSINMP
PREDGE
PRTPL
PREDGE
PRTPL
PREDGA
PRLD
PRVP
PRESHM
OPTNS
WORK4
PRFBKU
PRFMOD
PROUT1
TSPD1
TSPD1N
TSPD1
PRVIS
PRLD
PRESHM
PRLD
PRFONM
PRESM
PRFMOD

BINONNNMNAANNONOS AL ENENEPOENINNNNN

oy

[

W
w o

NOANOPIPODNONNNOIONANEBERDPOONINOANNNN

W

W

Table C-4: Variable List
for FRAME3
(Sheet 2 of 32)

165

- - -

C2N

Cc3

Cc3

C3N

CS

CSN

C6

CeN

CA
CASE
CASE
CASELE
CASENO
CB
CBKG
CC

CDN
CDSP1
CDSUM
CE

CE
CFBB
CFBT
CHAN
CHANN
CHAZ
CHNSTA
CL
CLLI
CLRCHZ2
CLRCH4
CLT
CLUCEN
CLUMAP
CNN
CNSOLE
CNSOLE
CNSP1
CNSUM
Cco

COL
COLFLG
COLOR2
COLOR3
COLOR4
con
CORCX

N
- N
PUOUORNPLPNOWOLWORMW

270

N
N
ow

SO WP WPEE PP WS-

200

260

130

LOCATI TOTAL#

- en - - - . -

BFRI 1280
BFRM 1280
BFRO 1280
VPCFC 6
TSPD2 24
VPCFC 6
TSPD2N 12
TSPD2 24
VPCFC 6
TSPD2N 12
TSPD2 8
TSPD2N 4
TSPD2 8
TSPD2N 4
PRVP 540
LR2 10
TB2 36
SINGS 30
SINGS 16
PRVP 540
VPCFC &
PRVP 540
TSPD1N 4
TSDBN 16
TSINC 16
VIDPRO =)
VPSINMP 6
FBTB 4
FBTB 4
TSPD1 2
TSPD1N 2
VPCFC 6
PRFBKD 2
VIDPRO)
VPLLI 4
RAMSET 16
RAMSET 16
PLGVP 240
WORK4 768
WORK4 36
TSPD1N 12
RAMOUT 4
RAMSET 4
TSDBN 48
TSINC 48
PRVP 180
GEN 800
ARIN 2
RAMSET 520
ARIN 2
RAMSET 520
INIT3 8
WORK4 4

Table C-4:
for F
(Sheet

166

Variable List
RAME?3
3 of 32)

SYMBOL

CORCZ
CORLAT
CORLON
CS
CSI
CTLWD
CTLWRD
CUMMUL
CURMAP
Ccv

CW
D.AA
D.AA
D.AA
D.AA
D.AA
D.aA
D.AA
D.aaA
D.AA
D.AA
D.AA
D.AA
D.AA
D.AA
D.AA
D.AA
D.AA
D.AA
D.AA
D.AA
D.AA
D.AA
D.AA
D.AA
D.AA
D.AA
D.AA
D.AA
D.AA
D.AA
D.AA
D.AA
D.AA
D.AA
D.AB
D.aB
D.AB
D.AB
D.AB
D.AB
D.AB

HHH:UI]HHHHHHHHHHI"'l

0]

N

W

LOCATI

WORK4
WORK11
WORK15
WORK4
WORK6
FRM1
FRM1
CXMAP
DECODE
EDGGEN
FRAMES3
MODSET
ORDER
OVERID
PRAUPD
PRCLR
PRELOD
PRINIT
PRTPLU
PTLSIT
PUT
RAMOUT
RAMSET
STPED
STPLT
TSDBN
TSEA
TSEDA
TSEDGR
TSEMOV
TSINIT
TSLODS
TSMUX
TSPINC
TSSHAD
TSTXMD
VPAINC
VPCFC
VPFADE
VPLTC
VPMLF
CXMaAP
ORDER
PRAUPD
PRELOD
PRINIT
PRTPLU
TSDBN

TOTAL#

123

.h-bob.&-b&#.&#&h-bh&#&hu&ﬁ&&h&&h&ﬁ»&&Ph&&#b&&k&kb#ONO&NO&h-b-b

Table C-4: Variable List
for FRAME3
(Sheet 4 of 32)

167

DELTJ
DEVICE
DF343
DHDR
DI
DIDJ
DIL
DIR

DJ

m:vk)w:nh+w'ﬂZJw:UZJm:UZJm:UZJm:UZJm04h4H04b+Hr4r4Hpq»iH’ﬂriHbﬁhthqhaHtﬂrqHr4h4Ht4h4H04|

- - -

O 0

'—i
PR PR R PR PRPRPRPPERPERPPNOFLOORARP PP ERPREFPRER

LOCATI TOTAL#
TSEDA
TSEDGR
TSEMOV
TSINIT
TSLODS
TSHUX
TSPINC
TSSHAD
TSTXMD
VPAINC
VPLTC
VPMLF
VPAINC
CXMAP
ORDER
STPED
TSBSNO
TSINIT
TSLODS
TSMUX
TSPINC
TSSHAD
TSTXMD
VIDPRO
VPSIMP
ORDER
STPED
TSMUX
TSPINC
VPSIMP
TSINIT
PRAUPD
TSVPFD
PRLD
PRVP
PRVP 360
PREDGA
PRESHM
PROUT1
TSVPFD
TSVPFD
TSVPFD
EDGGEN
PATPRO
PATPRO
RAMSET
TSVPFD
FRM3
TSEDA
TSEA
TSEDA
TSEDA
TSEDA

|
) N N N N N N N R R N N . I N N R N N N

w
(1))
o

~
N o

N NG N QT N NI I N

Table C-4: Variable List
for FRAME3
(Sheet 5 of 32)

168

SYMBOL

- -

ECWL
EDGENOQ
EDGENO
EDGENO
EDGFLG
EDW
EEA
EEB
EEM
EGF
EHDR
EJ

EJE
EJL
EJLEFT
EJM
EJR
EJRTP
ELEV
ENVBLK
EQF
EPRA
EPRAB
EPRAT
ERRMSG
ESMB
F1RFLG

CHHRHHHHHHDDDHRHDHHAHHAHHEHEHDD HHHHHHHHTZIIYDDDODODVD VDDV DVDDVDDIITDDD -]

[

NHEFRPNPRPOBGOWROMPOOEPNRP PP P BP PP

ey

P ORPRPPRPPPRRPORORPPRPARPPRPRERPRPE PR, EERERPWO

LOCATI TOTAL#

TSBSNO
TSEDA
TSLOD
TSLODV
TSLODS
TSLODS
TSBND
TSBND
TSBND
TSDBN
TSBND
TSBND
TSBND
TSLODS
TSOUT
VPFADE
VPFADE
DECODE
TSBNSF
CXMAP
STPED
STPLT
NSEDGE
PREDGR
PROUT
OPTNS
INIT3
PRFMOD
PRFMOD
PRESM
TSTXMD
STPED
PRLD
PREDGA
PREDGE
NSEDGE
PRESM
PREDGE
PRTPL
FRM1
WORK4
REED
PREDGA
PREDGA
PREDGA
MISC
PRESMI
OPTNS

-5
[V Y N R, N N N O S

N [NN R
DO NNND S

I NI NN

W

W

w
BOBARNNNBANBAENBRONANGCRE EONN®® LD

[y

Table C-4: Variable List
for FRAME3
(Sheet 6 of 32)

169

SYMBOL
FA

FA3
FACE
FACE
FACEDP
FACEL
FACELF
FACEN
FACER
FACERT
FACESP
FACEV
FACEXT
FACLUS
FACNCL
FACNED
FACOLR
FACTEX
FADFLG
FANUM
FB
FBITS
FBKENB
FBKENT
FBKWBT
FBKWTP
FBLEN
FBLEND
FBSUN
FBTHM
FCENX
FCENY
FCENZ
FCLUST
FCOEF
FCOLR
FDSLCT
FE
FEAT
FEATN
FEDGPT
FEFLG
FELE
FEM
FEME
FFA
FFB
FHEIGH
FIB
FIBFO
FIL
FIL
FIL

:UZJ:UIJ:U:UZJ:DHHHHHHHHHH:UH:UZJ:UHHHHHHHHHHHFHHHHHHH:UHHHHHr.HH:x)H|—-i

N
N
(@)

WP WOFEFPPRPPEPORRERPPEP P

P APPOPPRERPOFEEPRREEPEPP

LOCATI TOTAL#
PRLD 2
PRFBKM 4
COLOR 2
TSPD1 2
WORK4 256
NSTABL 1024
NSEDGE 2
TSPD1N 2
NSTABL 1024
NSEDGE 2
NSEDGE 8
WORK4 1200
WORKa 1200
WORK4 256
WORK4 256
WORK4 2956
WORK4 256
WORK4 296
OPTNS 4
WORK11 2
PRVP
WORK11
PRFBKD
PRFBKD
PRFBKD
PRFBKD
WORK11
WORK4 23
COLOR

PRFMOD
WORK11
WORK11
WORK11
WORK11
VPFADE 1
WORK11
PROUT1
TSEDGF
COLOR
WORK11
WORK11
PREDGA
TSBNSF
PRESNM
TSBNSF
VPFADE
VPFADE
WORK11
PRFBKHM
PRFONM
ARECAL
PRLD
PTLSIT

U
»
o

ANNONBE R PAEBABNONNNNNDN

W

-
O
N
OB LR BRBNOINNNNONNN

[

Table C-4: Variable List
for FRAME3
(Sheet 7 of 32)

170

- -

FILE
FILFIR
FILM
FILP
FILSZ
FIR
FIRE
FIRM
FIT
FITFO
FJL
FJL
FJLP
FJLPZ2
FJIN
FJR

FL

FLE
FLEX
FLM
FLONGX
FLONGY
FLONGZ
FMC
FNEDGE
FNORMX
FNORMY
FNOQRMZ
FNXTCL
FOPG
FOPS
FORI
FORI
FORI
FORI
FORI
FORI
FORI
FORI
FORI
FORI1
FORI1
FORI1
FORI1
FORI1
FORILX
FORI1X
FORIZ2
FORIZ2
FORIZ2
FORIZ2X
FORI2X
FORIE

[

N
(¢]

HrAHraHrAHrAHrAHrAHrAHbAHrAHrJHrJHraPraHrJH[9H+~H(pHrAhlAk*Nr*HrJHO\mtJAr*H

LOCATI TOTAL#
PREDGE 4
ARIN 4
PRESM 72
ARECAL 4
ARECAL 4
PRLD 16
PREDGE 4
PRESHM 72
PRFBKM 1024
PRFONM
ARECAL
PRAREA
ARECAL
LOCAL
PRAUPD
PRAREA
PRLD
TSEDGF
TSBNSF
PRESHM 7
WORK11
WORK11
WORK11
VPCFC 1
WORK11
WORK11
WORK11
WK1l
WORK11
VPFM
VPEFM
EDGGEN
EDGORD
INIT3
NSRSLV
PARSEL
PATPRO
PRINIT
TSEA
WNDDMP
TSBSNO
TSDBN
TSEMQV
TSESP
TSLODS
TSEMOV
TSESP
TSBSNQ
TSDBN
TSLODS
TSEMOV
TSESP
PATPRO

—

Anbﬁ-b&-bh.&&-A&-&A.hé.h#wh&.&&-b&.bN.bP.tho%-&#rONthJSP0>h¢uh&

Table C-4: Variable List
for FRAME3
(Sheet 8 of 32)

171

SYMBOL

FSHORT
FSURF
FsS2Z2
FSZ
FTOP
FVISED
FVORD
FVPG
FVPS
FWPG
FWPS
GCOL
GND
HALFNA
HALFNA
HAZCOR
HAZG
HAZS
HBB
HBT
HDRSW

HbﬁHlﬂkiﬁr%r#Hh*ﬂ:U?Jmh4Hb42)m:UIJH**H’4F4H*4mlﬂPiH[‘?)WIUIJW?UJJWZD?JW?OZJW:UZJW:DZJW t —

S DIMN#
4 1
4 1
4 1
4 1
4 1
% 1
4 1
% 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
2 12
2 1
4 4
4 1
4 3
4 18
2 1
2 1
4 13
4 3
4 18
4 1
4 1
4 1
4 1
4 1
4 1
2 128
4 1
4 1
4 1
4 1
49 6
2 3
2 32
2 94
4 1
2 3
2 3
2 1
2 1
2 1

LOCATI TOTAL#
PATPRO
PRELOD
TSESP
TSESP
NSRSLV
INIT3
NSRSLV
TSSHAD
VPSIMP
TSINIT
EDGORD
NSRSLV
TSEDA
VIDPRO
VPSIMP
VPTEX
WNDDMP
TSINIT
TSINIT
WNDDMP
COLOR
DECODE
WORK11
PRLD
WORK11
PRLD
PRESHM
PRFONM
PRFONM
PRESH
PRLD
PRESHM
WORK11
VPFADE
ARECAL
PTLSIT
PRFMOD
PRCTRL
WORK4
VPFM
VPFM
VPFM
VPFM
RAMCOH
VPFM
NSOUT
PROUT
VPCFC
VPFM
VPFM
PRFONM
PRFONM
NSEDGE

B T N N N T N Y Y S N S N W

L N
NS b

o N
e N a N Nl
AP LRBE DDA DAL BEBPLNNRNNNNRR

NS

Table C-4: Variable List
for FRAME3
(Sheet 9 of 32)

172

SYMBOL

HFOV
HFRFOB
HFRFOT
HHDR
HICLUS
HMLFOB
HMLFOT
HMPFOB
HMPFOT
HMRFOB
HMRFOT
HNA
HOSFOB
HOSFOT
HRZFLG
HTSFOB
HTSFOT
HUB
HUT

P Rt el e e e N N e N N e I N I N I e e

HHOHHHZ}HHW”HHl—i

- -

w

180

R R R PR RPRRRERRRRRERRRPRPPRPRRRPRPRERRPRRERPNRPRPEP,PPRPREROPRRRRERER

o T T S

LOCATI TOTAL®#
TSPD1
TSPD1N
PRFONM
PRFONM
TSEDGF
TSBNSF
FRM1
PRFONM
PRFONM
WNDDMP 360
WORK4
PRFONM
PRFONM
PRFONM
PRFONM
PRFONM
PREFONM
VPAINC 18
PRFONM
PRFONM
PROUT
PRFONM
PRFONM
PRFONM
PRFONM
COLOR
CXMAP
DECODE
EDGGEN
EDGORD
INIT3
MODSET
MODULA
NSOUT
NSRSLV
ORDER
PARSEL
PATPRO
PRCLR
PRDMP
PRINIT
PRIRSV
PROUT
PTLGEN
PTLSIT
PUT
RAMOUT
RAMSET
REED
STPED
STPLT
TSEA
TSEDGR

&N o

#&#h#h&-b.&&oﬁ.&ﬁ-&v&&%b#&&.&rb.b45A&MNNNN-&NN-&NNNI\)NMPONN-&NN&

Table C-4: Variable List
for FRAME3
(Sheet 10 of 32)

173

I1X
I2

I2

I2

I2

I2

I2

12
I2X
12X
I3
IABSAD
IABSAD
IAC
IALL
IALR
IAOB
IAOBI
IAP
IAP1
IAP2
IAPB
IAPB1
IAPB2
IAPC
IAPT
IAPT1
IAPT2
IARG
IARG
IARG
IARG
IARG
IARL
IARR
1B

IB

I)HHHHHHHHHHHHHHHHHHHHHHHHHHb—iHHHHHHHHHHHHHHHHHHHHHHHHHl

S DIMN#
4 1
4 1
4 1
4 1l
4 1
4 1
4 1l
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
2 S0
% 1
4 1
4 1
4 1l
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 30
4 1

LOCATI TOTAL#

- - —— - - -

VPPTR

VPSIMP
WNDDMP

FRM1

VPLLI

ARIN

NSRSLV
TSBSNO

TSDBN

TSEMOV

TSESP

TSLODS
TSPINC

PROUT

TSEMOV

TSESP

NSRSLV
TSBSNO

TSDBN

TSEMOV

TSESP

TSLODS
TSPINC
TSEMOV

TSESP

TSPINC
MODSET

SETRD

PRESEL
PRTPLU
PRTPLU

PRVP 18
VPMLF '
PRAPLU
PREDGA
PREDGA
PREDGA
PREDGA
PREDGA
PREDGA
PREDGA
PREDGA
PREDGA
MODSET
PUT
REED
SETFIL
SETRD
PRTPLU
PRTPLU
CXMAP
EDGGEN

N N N N N N W R N S

O N O N o T S S N R o S

[
N
DO DL DR DD DA D

Table C-4: Variable List
for FRAME3
(Sheet 11 of 32)

174

IB
IBA
IBC
IBF
IBF
IBKG
IBL
IBLU
IBM
IBNMF
IBOTH
IBR
IBTH
IBTMTP
IBX
ic

IC

IcC
ICAS
ICASE
ICHAN
ICLOS
ICLQS
ICLOS
ICLOS
ICLOS
ICLOS
ICLOS
ICLQGS
ICLOS
ICLRIX
ICNT
ICNT
ICNTR
ICNTR
ICOsSYsS
ICURR
IDADJO
IDEF
IDEV
IE
IED
IEF
IEFLG
IEHDR
IELAP
IELSE
IEPRI
IEQ
IESMA
IESMB

WWFREPRPRPEP PO

ey

e
o O
m(Dk‘PD‘h‘OC)Pt*F‘HF‘HO*k‘HrdHtJP‘HFJHO*h*H§Jk'HP*H}Jk*HtJF‘mP‘H$‘H

LOCATI TOTAL®

P - - —

STPLT
PREDGA
PRESEL
ARECAL
EDGGEN
VPILN
TSPINC
PROUT1
PRESM
NSEDGR
DECODE
TSPINC
PREDGA
PRTPL
TSBNST
ARIN
TSBSNO
TSDBN
T3SPINC
ARIN
OPTNS
CXMAP
EDGGEN
INIT3
PRIRSV
PTLGEN
PTLSIT
STPED
STPLT
VIDPRO
PRTPLU
FRAMES
NSRSLV
EDGGEN
PTLGEN
MISC
TSCTRL
ARIN
ARIN
DEV
PATPRO
FRM3
MISC
STRIP
STRIP
FRAMES3
DECGDE
PREDGA
PRTPLU
PRESNMI
PRESMI

W
CNADPBONA DR D RN O®

[

'—J
B
BANDLDOOBRBRDABRNNNLLLD DL LEBDDRAADRDEDANR BN

ww
NN

Table C-4: Variable List
for FRAME3
(Sheet 12 of 32)

175

SYMBOL
IFACE
IFACE2
IFACEL
IFACER
IFACL
IFACR
IFACX
IFBKB
IFBKT
IFD
IFLG
IFLG
IFLG
IFLG
IFLG
IFLG
IFLG
IFLG
IFLS
IFQOB
IFQT
IFPRI
IFRBTHM
IFRS
IFRTOP
IFS
IFXLOD
IGRN
IHDT
IHORIZ
IHP1
IHP2
IHP3
IHRZ
II

i1

II

11

II

1T

1J

1J
IJLE
IJLM
IJRE
IK

IL

IL

IL

ILE
ILEFT
ILFAC
ILNE

T

NN
N N O
4} [9Y)
QO 00

S Y L

(=Y
O
NP FRPPORPHEODREPREPEPREPRPP

LOCATI TOTAL#

- - am - - P

4
ARIN 4
PREDGE 4
PREDGE 4
GEN 800
GEN 800
EDGORD
PRFBKD
PRFBKD
PREDGA
EDGGER
FRAMES
INIT3

PRIRSV
PTLSIT
STPED

STPLT

WNDDMP
NSRSLV
PRFONNM
PRFONM
FACPR

PRFBKM 1024

R ANNLNBENNN/AE LD

o
[
D
N

NSRSLV 4
PRFBKM 1024
VPFADE 4
COPTNS 4
PROUT1 =
FRM3 4
VPFDC 2
PREDGA 4
PREDGA 4
PREDGA 4
NSEDGR 4
ARIN 4
PRELOD 4
TSEDA 4
TSEMOV 4
TSINIT 4
TSTXMD 4
TSTXMD 4
WNDDMP 4
PREDGA 4
PRESHM 72
PREDGA 4
TSESP 4
CXMAP 4
STRIP 400
TSCTRL 2
PRFBKU 4
TSTXMD 4
EDGGEN 4
TSBNSF 4

Table C-4: Variable List
for FRAME3
(Sheet 13 of 32)

176

INIBF2
INIBF4
INITFR
INK1
INK2
INT
INT
INT
INT
INT
INT

I0
IOBJ
IpP

Ip

IpP

IP1
IP1A
IP1B
IP2
IP2A
I1P2B
IP3
IP4
IPATH
IPES
IPFLG
IPLGER
IPLAQL
IPLQR
IPP1
IPR
IPRB1

HpHHHHHNHHHHHPHHHr—-NHHpHHHHHHHHHN.&HHHHHHNHHHHHHHHHHHHH

LOCATI TOTAL#
NSRSLV
TSTXMD
TSTXMD
FRM3
PREDGA
FRAMES3
ARIN
AREA2
SINGS
EDGGEN
ARIN
STPED
STPLT
TSBNSF
LRZ2
SINGS
TB2
VPPTR
VPPTR
PRESMI
RAMSET
RAMSET
PRCTRL
TSTXMD
TSTXMD
ARECAL
PRESEL
PRIRSV
PRTPLU
PTLSIT
TSEA
ARIN
ARIN
DECODE
TSESP
TSTXMD
TSEDA
PRESMI
PRESMI
TSEDA
PRESNMI
PRESMI
TSEDA
TSEDA
TSMUX
TSEDGF
PRCTRL
PREPD
PRTPLU
PRTPLU
TSTXMD
PRESMI
PREDGA

N N N N N N NN i N N N . T S OV I L

H
A BRABRDPODDPLEBDDBARDD

Table C~4: Variable List
for FRAME3
(Sheet 14 of 32)

177

SYMBOL
IPRB2
IPRCNT
IPRE
IPRIL
IPRIR
IPROC
IPRGOC
IPROC
IPROC
IPRQL
IPRAR
IPRS
IPRT1
IPRT2
IPUP1A
IPUPA
IR

IR

IR

IR
IRAE
IRAP3S
IRATP1
IRATP2
IREC
IREC
IREC
IRED
IRET
IRFAC
IRFC
IRFC
IRFC
iIRFC
IRSW
IRX
IRX

Is
ISCl
Isc2
ISEC
ISET
ISET
ISET1
ISET2
ISET3
ISHVUP
ISTAT
ISTAT
ISTAT
ISTAT
ISTAT
ISTAT

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHWHHHHHHHHHHHHHHHHHl"’

=
o

PR P RPRPPREBRPRERRREBREPRPRRPRPPEPREPREPLPPEPPLBREPREFOUOURP,RPRPEPRPPOPHEPRERRPRPRERRERPREPRREPRRPREPRRPR

LOCATI TOTAL#
PREDGA
TSCTRL
TSTXMD
PREDGE
PREDGE
MODSET

PUT

REED

SETRD

PRTPLU
PRTPLU
NSRSLV
PREDGA
PREDGA

PROUT

PREDGA

CXMAP

STRIP 40
TSCTRL
TSEA
PREDGA
PRP3S
PREDGA
PREDGA
BFRI
BFRM
BFRO
PROUT1
LR2
EDGGEN
MODSET
PUT
REED
SETRD
TSTXMD
MODSET
SETRD
TSESP
DECODE
DECODE
FRAMES3
OVERID
VPCFC
TB2
TB2
TB2
PRDMP
MODSET
PATPRO
PUT
RAMOUT
RAMSET
REED

DR LA PLNORELE PR PADBRDEBEDR DAL DNR

NNN
© 0o

T N I N O N T S N T SN N N S S)

Table C-4: Variable List
for FRAME3
(Sheet 15 of 32)

178

SYMBOL

ITA
ITB
ITC
ITEMP
ITEXC
ITF
ITF
ITIM
ITL
ITH
ITM
ITMP
ITMP
ITQOP
ITOPTP
ITORRB
ITP1
ITP2
ITP3
ITPF
ITPK
ITPRIL
ITPRIR
ITR
ITXS
1Uu

IU

IU

IU

IU
Iul
IU1l
IU1
1uUp
Iup
iup
Ivi
vz
IvV3
IWL
IX

IX

IX
IXCcoL
IXP

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH)—!HHHHHHHHHHHHHHHXJHHHHH -3

HrdwlnwrapraHiaPbawraPrAH)AHrAPram(DHraerHramrapram(pH(pHrAOO\HrAH.&Hraw(nwrap

LOCATI TOTAL#
SETFIL

SETRD

VPLTC

FRAMES3 1
ORDER
EDGGEN
NSRSLV
PRLD
PREDGA
ARECAL
TSTXMD
WNDDMP
STRIP
ARECAL 4
EDGGEN 4
FRAMES3 12
TSPINC 4
FRM3 32
PRESHM 36
EDGORD
PRIRSV
PREDGA

PRTPL 1
PRTPLU
PREDGA
PREDGA
PRTPLU
NSEDGR
PRTPLU
PRTPL
PRTPL
TSPINC
TSTXMD
TSBSNO
TSDBN
TSEMOV
TSLODS
TSTXMD
TSBSNO
TSEDA
TSLODS
MODSET
PUT
REED
DECODE
DECODE
DECODE
NSEDGE
BFRI
BFRM
BFRO
FRM3
TSTXMD

BB NOBR L BNB LD

B
o
o b

ww

ANNNBAP LB BRPARARDARBNONADLDBAERENOND S

NN
» L OOCO

Tavle C-4: Variable List
for FRAME?3
Sheet 16 of 32)

179

- - -

J3
JAE
JAL
JARG
JARG
JARG
JARG
JC1
Jc2
JCURR
JDADJO
JE
JED
JEFLG
JEHDR
JEL
JEL
JER
JHDR
JINDX
JINIT
JJ

JL

JL
JLEFT

PR PR RPBRERPBHEPERERPRPERERPPPERPRRPBERREEEPRHEBSD

O PR PP PP e

® N
OO0 W
»OO0r

=

300
512

100

256

LOCATI TOTAL#

- um - -

TXMAPS
STPLT
CXMAP
DECODE
EDGGEN
INIT3
NSQUT
NSRSLV
ORDER
PRDMP
PROUT
PTLGEN
PTLSIT
STPED
STPLT
TSEDGR
TSMUX
TSSHAD
VPLLI
VPPTR
VPSIMP
FRM1
VPLLI
MODSET
PRDMP
PUT
REED
PRDMP
PRDMP
VPPTR
VPPTR
MODSET
PUT
REED
SETRD
EDGGEN
EDGGEN
TSCTRL
ARIN
PRVP
PROUT2
GEN
GEN
JWIN
TSBSNG
JWIN
WNDDMP
LTORD
VPTEX
TSINIT
STRIP
TSPD1
NSTABL

T N S N TN TN NI R N G S N N N S QA . T R S

ONNB O L DD LD

® W
O o
o w

3200

3600
1024

400

1024

Table C~4: Variable List
for FRAME3
(Sheet 17 of 32)

180

JRCYC
JRCYCS
JREC
JREC
JRFC
JRN
JRP
JSAV
JSSW
JSTR
JTEXC
JX

JX

JX

ARXREKRRRXRXARARXRXXAXAXRXXKXXXAR

HHHHHHHHHHHHHHHHHHHHHHHHHZJHHHHHHHI)HHHHHHHHHHHHHHHZ)HHHI

- - -

W
(@

=
(o]
NNFRPPNRPRPPRPRPPORPREPEOP

N
(@)

R R R PR RRPRPRPERPPRERPRPRPRPEPEPRPPORPRR PR PP RHEPEWNORER

LOCATI TOTAL#
VIDPRO 4
PLGVP 160
TSPD1IN 2
EDGGEN 4
NSRSLV 4
TSEMOV 4
WNDDMP
TSEA
TSEDGR
PATPRO
TSEA
PRLD
TSINC
TSDBN
TSCTRL
TSINC
TSINC
TSCTRL
MODSET
STRIP
TSPD1
TSCTRL
VPTEX
MODSET
REED
MODSET
TSPDLIN
EDGGEN
VPTEX
MISC
TSCTRL
GEN 80
MODSET

PUT

REED

CXMAP

DECODE
EDGGEN
EDGORD
MODSET
NSRSLV

ORDER

PRAPLU
PRAUPD

PRDMP

PRELOD
PRTPLU
PTLGEN
PTLSIT

PUT

REED

TSDBN

TSEDA

|

N

O

OBR NS RAND P ERSPLLO

N
O

N N N - N - QO O G O N T N N N O TN S R N i N VR LA

Table C~4: Variable List
for FRAME3
(Sheet 18 of 32)

181

KLFAC
KLHDR
KLINM
KLIM
KLIT
KLOD
KLTAB
KNT
KNT
KP
KPX
KPY
KP2Z
KRASH
KRFAC
KS
KSKY
KUvVW

-—— - - -

(8
f—l

»
Q
O

1600

PP PRPOOOFREPOF P

LOCATI TOTAL#
TSEDGR
TSESP
TSMUX
TSSHAD
TSTXMD
VIDPRO
VPAINC
VPCFC
VPFADE
VPLTC
VPMLF
VPSIMP
WNDDMP
SAVELT
VIDPRO
VPLTC
SAVELT
VPLTC
SAVELT
VPLTC
MODSET
PUT
DEVCOHM
EDGORD
GEN
EDGGEN
WNDDMP
VPFM
FRM1
FIXDT
EDORD 1024
FRM] 4
VPMLF 4
VPSINP 4
TSINIT 4
GEN 1600
GEN 64 ™"
EDGGEN 4
EDGORD 4
GEN 4
FIXDT 4
4
4
4
4

Lo Y Y N N N N N N N Y N A A T S O N R N

-

FIXDT 6
STPED

STPLT

PRAUPD

WORK11 12
WORK11 12
WORK11 12
VPFM 2
EDREL 4
FRM1 4
VPFM 4
FIXDT 24

Table C-4: Variable List
for FRAME3
(Sheet 19 of 32)

182

L3
LADR
LARG
LAYREC
LCOL
LDA
LDB
LE

.E

=C

L .MP
LEDG
LEDG
LEDG
LEFT
LEFT
LEFT
LEFT
LEFT
LEND
LENE
LEQFS
LEQFS
LEQFS
LET
LET
LETOT
LFAC
LFACN
LFDT
LFREEZ
LHDR
LI
LIM
LIMED
LIMEDG
LIMLIT
LIMLT

S Ll ol o

o u
O =

[
Lh
[>el

O e L T

R R PR, P OPRPNORRPRPRPRERERERERPP -

LOCATI TOTAL®#
CXMAP
DECCDE
NSRSLV
ORDER
PRDMP
PTLGEN
TSEDA
TSESP
TSTXMD
VPLLI
PREEFS
TSESP
PREEFS
TSESP
ORDER
TSESP
VeLTC
MOLSET
WORK4
GEN 160
PREDGA
PREDGA
TSEDGF
WORK
VPMLF
FRNM3
NSOUT
PATPRO
PROUT
MODSET
PUT
REED
TB2
WNDDMP
PRIRSV
TSBNSF
VIDPRO
VPMLF
VPSIMP
VPMLF
VPSINP
VPPTR
NSRSLV
PTLSET
FRM3
WORK4
PTLSET
VPLLI
WNDDMP
VPAINC
STPED
STPLT
VPLTC

P N N NN N N N

N
O
»

MNONB &L, EAENSN

L
—
o

PO S N N S .S NI ol

® N
o) O
AABR LB LONDPORBAINNRABANDN

Table C-4: Variable List
for FRAME3
(Sheet 20 of 32)

183

SYMBOL
LITC
LITLIM
LITLUN
LITSZ2
LJ

LL
LLDT
LLFENB
LLFENT
LLFLG
LLIM
LLOC
LMEM1
LMEM1
LMIN
LMLM1
LN

LNaA
LNB
LNC
LNE
LNSP
LNST
LO

LOB
LGC
LOCFLG
LOD
LOD
LODF
LODMOD
LaDsS
LODT
LOWPRI
LP

LPA
LPB
LPCT
LPCT
LPCT
LPL
LPLT
LPN
LPRA
LRF
LSB
LSBHM
LSBSM
LsSBX
LSIZ2
LSP
LST
LSTLEN

HHHHHHHHHHHHHHHHHHHHHH["'HOH["HHHZJWHHHHHHHHHHHHHHHHHZJHHH|

LOCATI TOTAL#®
PTLSET 20
PTLGEN
PTLNAMNM
PTLSET 20
VPLLI
TSINIT
FRM3
PRFBKD
PRFBKD
VPLLI
SAVELT
NSRSLV
LTC
VPAINC
VPLLI
VPLTC
MISC
PTLSIT
FRM3
EDGGEN
FRM3
EDGGEN
EDGGEN
MISC
DCQUT
NSRSLV
OPTNS
TSLODV
WORK4
TSTXMD
OPTNS
TSPINC
TSLOD
PRTPLU
DEVCOM
PRVP 180
PRVP 180
MODSET 4
PUT 4
REED 4
PLGVP 160
PTLGEN
PTLGEN
PRTPLU
DCOUT
TSTXMD
TSTXMD
TSTXMD
TSTXMD
PLGVP
MISC
MISC
PREDGA

TS Y N N Y N NV QT S S O S S L S O o

¥ay

&)

(
N Y Y N SR S N St S

—
o0 =
NBEDONDARADD DB

Table C-4: Variable List
for FRAME3
(Sheet 21 of 32)

184

ﬂ

- - -

LUNL
LUTSEZ2
LUTS®4
LZ2E
L2L

j< gt Jic - G S Jc S~ Jhcy
[

MAPL
MAPSET
MAX
MAXDIS
MAXLOD
MAXLYR
MAXPRI
MAXRNG
MAXTP
MB

MBK

MC

NCP
MDFNO
MDFNO
MDFNO
NDSLCT
ME
MELE
MEME
MIN
MINRNG
NJ

MJ

P

PR R EPEPEPPRPPEREPRPRPERERERAEBNRNDE PP

4

2

4

4

2

4

2

4

2

4

4

3

4

4

4

4

4

4

4

4

4

4

4

2 2048
4 1024
4 1024
4 1024
2

2 2048
2 2048
4

4

4

4

4

<4

4

4

2

4

4

4

4

4

4

2

2

2

2

4

4

4

4

N
N

PrRrOEORPRERPORPPPRPBMERORPDPEEEDLPP

LOCATI TOTAL#
PTLSIT 4
FRNM3 2
PTLSIT 4
VPPTR 4
PRQUT2 4
VPPTR 4
LUNEDG 4
VPPTR 4
RAMSET 8
RAMSET 8
FRM3 4
FRNM3 4
CXMAP 4
ORDER 4
PRDMP 4
PUT 4
STPED 4
STPLT 4
TSESP 4
WNDDMP 4
TSTXMD 4
TSTXMD 4
TSTXMD 4
CXMAP 4096
CXMAP 4096
STPED 403986
STPLT 4096
TSPD2 12
STPED 4096
STPLT 40396
TSTXMD 4
VIDPRO 4
WORK17 256
TSLODS 4
WORK21 4
PRAPLU 4
MISC 32
PRTPLU 4
PRVP 540
VPCFC 4
TXMAPS 24
TSTXMD
LR2
SINGS
TB2
PROUT1
TSEDGF
TSBNSF
TSBNSF
VIDPRO
MISC
VPMLF
VPSINP

w
ABRBNBNNNOGO S L DD

Table C-4: Variable List
for FRAME3
(Sheet 22 of 32)

185

SYMBOL

I e

ML
MLFBB
MLFBT
MLFLG
MLFOB
MLFOT
MLM
MM
MMPQS
MMW
MNEG
MODATA
MODFLG
MODJ
MODL
MODL
MODLFT
MODLN
MODR
MODR
MODRN
MP

MP
MPBIT
MPFBB
MPFBT
MPFLG
MPFQOB
MPFOT
MPL
NPLOD
MPM
MPR
MR
MRFBB
MRFBT
MRFLG
MRFOB
MRFQT
MRM
MSKE
MSKE
MSKL
MSKL
MXC
MXCT
MXEDG
MXLIT
MXLNE
MXLNT
MXLODF
N

HHHHHHHHHHHHHHHHHHHHHHHHHHHH["'HHHHHHHHHHHHHHI"‘HHHHHHHH:U [|

PO WHR WRREPNDWHP PR

ISEN
0
(AN}

e el

B NRPPRPRPRPPRPRPRPRERPPPORPP

LOCATI TOTAL#

- - - - - -

FIXDT 4
PRLD 6
PRFBKM S12
PRFBKM S12
PRTPLU 4
PRFONM 2
PRFONM 2
PRESM 36
TXMAPS 24576
OPTNS 4
TXMAPS 24576
VPSIMP 4
TSESP 4
PROUT1 2
TSPINC 4
PREDGE 2
TSPD1 6
PROUT1 4
TSPD1N 2
PREDGE 2
TSPD1 6
TSPD1N 2
PRLD 6
TSTXMD 24
EDGORD 4
PRFBKM 512
PRFBKM S12
PREDGE 2
PRFONHM 2
PRFONM 2
TSTXMD 4
TSTXMD 56
PRESM 36
TSTXMD 4
PRLD &
PRFBKN 512
PRFBKM 512
PRTPLU 4
PRFONM 2
PRFONM 2
PRESM 36
CXMAP 4
STPED 4
CXMAP 4
STPLT 4
TSTXMD 4
TSTXMD 4
CTRL 4
CTRL 4
CTRL 4
CTRL 4
TSLODV 4
CXMAP 4

Table C-4: Variable List
for FRAME3
(Sheet 23 of 32)

186

SYMBOL T S DIMN# LOCATI TOTAL# Table C-4: Variable List

for FRAME3

N I a4 1 INIT3 4
N I a 1 MODSET 4 (Sheet 24 of 32)
N I 4 1 DRDMP 4
N I a 1 PTLGEN 4
N I 4 1 PUT 4
N Ia 1 STPED 4
N I a 1 STPLT 4
N I a 1 VIDPRO 4
N I 4 1 VPAINC 4
N Ia 1 VPLTC 4
N Ia 1 WNDDMP 4
N1 I 4 1 VIDPRO 4
N2 I 2 1 ORDER 2
N2 I 4 1 VIDPRO a
NA Ia 8 LOCAL 32
NA I 4 25 LUNEDG 100
NA I 4 46 NSOUT 184
NA Ia 46 PATPRO 184
NA I a 47 PROUT 188
NA I 4 11 SAVELT 44
NA I 4 46 VPAINC 184
NA Ia 12 VPLTC 48
NAF I a 1 GEN 4
NAFCL I 4 100 STRIP 400
NAFCR I 4 100 STRIP 400
NAME R 8 2 CXMAP 16
NAME R 4 2 EDGGEN 8
NAME R 8 1 PTLSIT 8
NAME R 8 1 SAVELT 8
NAME R 8 2 STPED 16
NAME R 4 2 VPAINC 8
NAME R 8 1 VPLTC 8
NAME R 8 1 WNDDMP 8
NAML R 8 1 STPLT 8
NBYTES I 4 1 RAMCOM 4
NCOL I 4 100 STRIP 400
NCULF C 1 1 WORK4 1
NE I 4 1 FIXDT 4
NE I2 S PRLD 16
NE 12 1 TSEDGF 2
NEC I a 1 PATPRO 4
NECNT I 4 1 PRCTRL 4
NED I 4 1 FRM3 4
NEDG I 4 1 STRIP 4
NEDGES I 2 1 WORK4 2
NEFE I 2 1 TSBNSF 2
NEFLG I 4 90 PRVP 360
NEG Ia 1 PRVP 4
NEHDR I 4 360 PRVP 1440
NEN I 4 1 VIDPRO 4
NENE I 2 1 TSBNSF 2
NEWLST I 2 1 PROUT1 2
NEWMOD I 4 1 PROUT1 4 187

:-—————-——-———-J

SYMBOL T S DIMN# LOCATI TOTAL#» Table C-4: Variable List

for FRAME3

-y - - - - - - -

NEWOS I 2 3 MODOUT 6
NEWTHS I 2 1 MODOQUT 2 (Sheet 25 of 32)
NEWTS I 2 3 MODOUT 6
NFA I2 3 MODOUT 6
NFACE I 4 256 PRFACE 1024
NFACL I 4 100 STRIP 400
NFACR I 4 100 STRIP 400
NFACT I 4 1 EDGORD 4
NFSUM I 4 1 FIXDT 4
NJ I 4 1 VPTEX 4
NL I 4 1 FIXDT 4
NLHDR I 4 160 PLGVP 640
NLIT I 4 1 PTLSET 4
NLITE 1 4 1 PLGVP 4
NLT I 4 1 FRM3 4
NM I 4 1 INIT3 4
NMA I 2 3 MODOUT 6
NME I2 1 MODOUT 2
NMED I 4 1 CTRL 4
NMLT I 4 1 CTRL 4
NMSLCT I 2 3 MODOUT 6
NOBJ I 4 1 CXMAP 4
NOCOL I 2 1 EDGGEN 2
NOCOL I 2 1 FRAME3 2
NOCOL I 2 1 INIT3 2
NOCOL I 2 1 PRIRSV 2
NOCOL I 2 1 PTLSIT 2
NOCOL I 2 1 STPLT 2
NOCOL I 2 1 WNDDMP 2
NOEDG I 2 1 FRM3 2
NOLIT I 2 1 FRM3 2
NOSEC I 4 1 FRAME3 4
NOSSEC I 4 1 FRAMES3 4
NOX I2 1 PRNXTO 2
NOXF I 2 1 CASE2 2
NP1 I 4 1 VPAINC 4
NP1 I 4 1 VPLTC 4
NS I2 4 PRLD 8
NSBNX I 2 1 NSEDGE 2
NSE I2 1 PREDGE 2
NSET I 4 1 VIDPRO 4
NSET I 4 1 VPCFC 4
NSET I 4 1 VPFADE 4
NSHM I 2 18 PRESHM 36
NTERF C 1 1 WORK4 1
NTEXC I 4 30 PRVP 360
NTEXF C 1 1 WORK4 1
NTNENB I 2 1 PRNEFS 2
NUMFAC I 2 1 COLOR 2
NVP I 4 9 FIXDT 36
NVRTEX I 2 1 WORK4 2
NXFACE I 2 1 COLOR 2
NXTBLK C 1 1 WORK4 1

188

SYMBOL
NXTBTM
NXTE
NXTEDG
NXTFAC
NXTL
NXTTOP
8]

OFA
OLDLST
QLDMOD
CLDOS
OLDP1
OLDP2
QLDTHS
OLDTS
aMa
OME
QMSLCT
ORGEDG
ORIENT
Qs
QSBT
OSFBB
QSFBT
QSFLG
OSFOB
OSFAaT
OSM

P

Pl
P1CLPS
P1FLG
P1UFB
P1UPZ
P2
P2FLG
P2NE
P2UFB
P3
P3ENB
P3ENT
P3EPAB
P3EPAT
P3FLG
P3P
P3SBR
P3SFAC
P3SFIB
P3SFIT
P3SFLG
P3SML
P3SMP
P3SMR

-3

W oH
BN AVNAN

HHHHZ)Z)H;U:)HHHHHR]HHH:UHHHHWmHHHHHH:UHHHHHHHHHHHHHH

NNNN&AN-&.&NI\)NNN.&NNIO.&I\.’IMNNA&NNNNNN'&NNJ&NNNNNNNNJ&NN

m(bODH(D0>mrah*HrAFAHbah&Hrah&Pnar*H'arah-mteraw

LOCATI TOTAL#
PRFMOD
VPAINC
TSCTRL

WORKA4 12
VPLTC
PRFMOD
PRFBKU
MODOUT
PROUT1
PROUT1
MODQUT
PREDGA
PREDGA
MODQOUT
MODOUT
MQODQUT
MODOUT
MODOUT
PROUT
WORK15
PRLD
NSOUT
PRFBKM
PRFBKM
PREDGE
PRFONM
PRFONM
PRESH 3
DECODE

TSEDA

PRVIS

PREDGA

FLGS3

FLGS2

TSEDA

PREDGA

PRVIS

FLGS3

TSEDA

PRFBKD
PRFBKD

PRP3S

PRP3S

PREDGA

TSEDA

PRTPLU

PRP3S 16
PRP3S 32
PRP3S 32
PRP3S 2
PRP3S 16
PRP3S 16
PRP3S 16

NOLENOSENPDONBAN

[N
N
APOROANOONN

uw
-
NN

LBANNNNNANNNBIRNNNDLEBRNND

Table C-4: Variable List
for FRAME3
(Sheet 26 of 32)

189

SYMBOL

- e - - -

PARAMNM
PARAM1
PARANM2
PARANM3
PARAM4
PARAMS
PARAMG
PARAN?
PBGCNT
PCFIC
PCOLNT
PCOLWT
PE
PFACOD
PHEIGH
PHILEV
PI

PIJ

PL
PLSB
PN

PNI
PNIP1
PNM1
PNP1
PNPD
PO

POP
POPN
PPUP1A
PR
PREMP
PREMPN
PREMPY
PRI
PRI
PRI
PRI
PRIEN
PRIENN
PRILFT
PRIRGT
PRIRT
PRVPDA
PRVPDA
psp
PSUNM
PT

-

W:UZJz:thH)ﬂkiHiﬂ:}HiﬂhﬂH'ﬂ!’H:U?Jm:nl)m:n:)m#*m:UiJHlﬂF(mbdkiHrﬂbdk!qur4H

S DIMN#
2 8
2 8
4 1
4 1
4 6
4 10
4 10
4 10
4 10
4 10
4 10
4 10
4 10
2 1
2 1280
2 1280
2 1280
4 1
2 1280
2 1280
2 1280
4 12
4 i2
4 3
4 6
4 =)
4 6
4 6
4 6
4 &
4 1
4 3
4 6
4 3
2 1
4 3
2 1
2 1
2 6
2 1
2 1
8 1
4 1
2 6
2 1
2 1
2 1
4 256
8 1
8 1
4 1
4 2
4 6

LOCATI TOTAL#

P

TSEDA
TSTXEV
RAMOUT
RAMSET
RAMOUT
RAMOUT
RAMSET
RAMSET
RAMSET
RAMSET
PRCTRL
WORK10
WORK10
WORK10
TSEDA
WORK1O
WORK10
WORK10
TSTXEV
TSTXEV
TSTXEV
TXMAPS
TSBND
TSBSNO
TSBSNO
TSBND
TSBND
TSDBN
WORK11
TSPD2
TSPD2N
PRFBKD
TSTXEV
WORK11
TSPD2N
TSPD2
ARIN
DECODE
INIT3
OVERID
TSPD2
TSPD2N
NSEDGE
NSEDGE
NSTABL
NSOUT
PROUT
VPMLF
TSOUT
TSTXEV

2560
2560
2560
2560

2560
2560

PR NNNNRNNP SR
O S N G N G Oy NI Y

[-
NNMNNRNN

-
o
N -
Nd DN

A OHO®OLENNN

N

Table C-4: Variable List
for FRAME3
(Sheet 27 of 32)

130

SYMBOL
PTEXT
PTLFLG
PTXSC
PUP1F
PUP2F
Q

R

RA
RAMTEK
RAMTEK
RB

RB
RCOL
RDF343
REGCX
REGCY
REGCZ
REGLAT
REGLON
REGRAD
RELFAC
RELLPA
RELLPB
RELPRI
RELTPR
RF

RFG
RFGI
RFP
RFS
RFSI
RGHT
RI

RIB
RIB
RIB
RIL
RIL
RILL
RIR
RIR

RJ

RJK
RJL
RJLL
RJLP
RJIJLPP
RJLS
RJLS
RJM
RJR
RJRP
RL

-3

DVDDDDDDDDDDDVDODDVDIVVDDDTOHADDDDNOHHHHHDODHHIDDODODHDIDHHDIBOHHDICH

B DAL BAERDLDDERLEDADADRAEBRL, DL LR DLDBEBLEENNNNONN BB DDDAL LA LABEREAERPNONNDAN

- -

512
512
512

18
SO
200

LOCATI TOTAL#
WORK10 2560
OPTNS 4
PRVP 5400
PREDGA 2
PREDGA 2
DECODE 4
DECODE 4
VPFADE 4
RAMOUT 4
RAMSET 4
FRM1 4
VPFADE 4
RAMCOM 24
VPLLI 4
WORK4 4
WORK4 4
WORK4 4
WORK4 4
WORK4 %
WORK4 4
EDREL 81382
PRVP 180
PRVP 180
EDREL S1z2
PROUT2 4
VPFDC 4
VPFDC 4
VPFDC 4
VPLLI 4
VPFDC 4
VPFDC 4
TB2 4
PTLSET 200
CXMAP 120
STPED 120
STPLT 120
STPED 4
STPLT 4
GEN 1800
STPED 4
STPLT 4
PTLSET 200
PRAUPD 4
PRVP 360
GEN 2048
GEN 2048
EDGORD 2048
LUNEDG 4
PTLGEN 8
PRESM 72
PRVP 360
GEN 800
FRM1 4

Table C-4:
for
(Sheet

191

Variable List
FRAME3
28 of 32)

SYMBOL

- . - -

RT
SAVSSW
SCALE
SCL
SEM

SH

SHa
SHK
SHRTEX
SHVDWN
SHVUP
SINGFL
SINGLE
SI2LT
SKY

SL
SLMAX
SLOP
SLP
SLPSGN
SMLE
SN
SPCASE
SR

SS

SSN
SsSw
STPFAC
STRFAC
sV

szZp

HOHM

a b

A&NN#NNA&AN»NA#&N#N#&NNA@PN&N»&&»&&##AN&A&#&&A&&A»#

- - -

[

LOCATI TOTAL#

- - -

PTLSIT
STPED
STPLT
STPED
STPLT
LOCAL
LUNEDG
NSOUT
PATPRO
PROUT
SAVELT
VPAINC
VPLTC
EDGGEN
DCOUT
FIXDT
FIXDT
TSTXMD
FRM1
MODSET
SETRD
VPLNDL
FRM1
SVSSW
WORK1S
TSTXMD
PRESHM
EDGGEN
EDGGEN
TSQUT
WORK11
PRFONNM

PREDGA

SINGS
DCOUT
GEN
VPFM
TSEA
PRAREA
STRIP
EDGGEN
PROUT
PREDGA
FRM1
DECODE
TSEA
TSPD1
TSPD1N
SSWTCH
NSEDGE
NSEDGE
FIXDT
ARECAL

- -

184
184
188
44
184
60

12
12

24
24

128
120

L W
DN E RO D

160

»
(@]
NOABRNNANORBSBIO LS

(=3

[5) 0 o
- N
N

S12

[
L N

Table C-4: Variable List
for FRAME3
. (Sheet 29 of 32)

192

™ S —

SYMBOL T S DIMN# LOCATI TOTAL# Table C-4: Variable List

for FRAME3Z

T1 I 2 1 PRVIS 2
T2 12 1 PRVIS 2 (Sheet 30 of 32)
T3 I 2 1 PRVIS 2
T4 I 2 1 PRVIS 2
TS I 2 1 PRVIS 2
TBF I 2 1 ARIN 2
TBLCNT I 2 1 NSEDGE 2
TBLK I 4 S MODSET 20
TBLK I 4 S PUT 20
TBLK I 4 S REED 20
TBLK I 4 S SETRD 20
TBUSE2 I 2 1 WORK4 2
TCOLOR I 2 144 WORK6 288
TDJL I 4 1 TEXDMNP 4
TDJR I 4 1 TEXDMP a
TEEFD I 4 18 PRESH 72
TEEFDA I 4 1 PRFMOD 4
TEEFDB I 4 1 PRFMOD 4
TEX R 8 1 INIT3 8
TEXCOD I 2 1 WORK11 2
TEXFLG L 4 1 OPTNS 4
TL R 4 3 TSOUT 12
TLAYER I 4 1920 WORK21 7680
TLFENB I 4 1 PRFBKD 4
TLFENT I 4 1 PREBKD a
TP I 2 256 EDORD 512
TMPL R 4 1 ORDER a
TNEFLG I 4 1 NSOUT a
TNEFLG I 4 1 PROUT 4
TNX R 4 64 WORK17 256
TNY R 4 64 WORKL7 256
TNZ R 4 64 WORKL7 256
TOL 5 a 1 PRESEL a
TOL R 4 1 PRTPLU a
TR R 4 3 TSQUT 12
TRAN31 C 1 1 WORK4 1
TRIG I 2 1 COLOR 2
TRILAY I 2 1 COLOR 2
TRINUM I 2 1 COLOR 2
TS I 2 3 PRLD 6
TSCN R 4 1500 STRIP 6000
TSCND R 4 360 PRVP 1440
TSFBE I 2 256 DRFBKM S12
TSFBT 1 2 256 PRFBKM 512
TSFLG I 2 1 PREDGE 2
TSFOB I 2 1 PRFONM 2
TSFOT I 2 1 PREONN 2
TSK R 4 8 TSOUT 32
TSM I2 18 PRESHM 36
TSTFAC I 2 1 COLOR 2
TSUM R 4 4 TSOUT 16
TXCODE I 2 18 TSPD2 36
TXCODN I 2 3 TSPD2N 6 193

-

3YMBOL
TXsSC
TXSHDF
TXSHDN
TXTAB
JCNT
JFACEL
JFACER
JFOFBB
JFOFBT
JFOP1B
JFQP1T
JFOP2B
JFOP2T
JILEFT
JLOC
JPRIRT
JSEDTP
JSEP3
JSEP3
JSEP3B
JSEP3T
JVSWS
JVW

VE
VEFOV
vIiB
VIT
VLABEL
VP

VPN

vX

vY

vz

WwJ

WND
WNDFLG
X

X

X

XCD
XCDJ1
XCDJL
XCDL1
XCDSUM
XCN
XCNJ1
XCNJL
XCNL1
XCNSUM
XJL
XLATHMN
XLATMS
XLT

mrﬂhiH:UZ)m:DZ)m:v::m:uz:w:nr‘m:UJJm:v2vaﬂr4himrﬂz)mrﬂhim:orthﬂraHo4P4H04r4Hr4»4Hr4H:nl ~3

—— - -

N
o

[3]
(@]

N
un
QWO rPPrADOFRPPEREPROCPRPOR PP RR

NN
nw
oo

256

PO PN RFEFRPRPPRNNERERPRREREPPON

—“

LOCATI TOTAL®#

- - - -

TSpD2
TSPD2N
MISC
NSEDGE
NSRSLV
NSRSLV
PRFBKD
PRFBKD
PRFBKD
PRFBKD
PRFBKD
PRFBKD
NSRSLV
NSRSLV
NSRSLV
PRTPL
PRDMP
PRFBKU
PRP3S
PRP3S
FIXDT
FRM1
PRLD
FRM1
PREDGE
PREDGE
WORK4
FRM1
FRM1
WORK4
WORK4
WORK4
ARECAL
FRM1
JWIN
PTLSIT
STPED
VIDPRO
TSESP
TSESP
TSESP
TSESP
TSINC
TSESP
TSESP
TSESP
TSESP
TSINC
TSINC
TSPD2N
TSPD2
INIT3

12000
12

2

12

2

800
800

1024
1024
1024

Fon
N

N
ONNE BB DD D DRD DD DB RS

-

Table C-4: Variable List
for FRAME3
(Sheet 31 of 32)

194

SYMBOL T S DIMN# LOCATI TOTAL® Table C-4: Variable List
------ - T TTTST Temoss mmemes fo
MAP I 4 256 TXMAPS 1024 _ (Sheeg ggAg§332)
XP R 12 TSESP 48
Xs T2 1 ARIN 2
XSIZ I 4 1 RAMSET 4
YSign I 4 1 RAMSET 4
YSIZ I 4 1 RAMSET ¢
ZFACOD I 4 1 COLOR 4
ZPAREN I 4 1 COLOR 4
ZPRIO I 4 1 COLOR 4

TOTAL
SIZE 5,774
DIMN 93,295
TOTAL 263,488

195

SYMBOL T S DIMN# LOCATI TOTAL# Table C-5: Variable List
AOUPL [2 S12 PRIUOL 1024 (SiggtP§I§§O7)
AUORPL I 2 512 PRIUCL 1024
BUFF I a4 320 BFRI 1280
BUFF I 4 320 BFRO 1280
COMNAM R & 1 PDINP 3
D.AA I 4 1 MODCNT 4
D.AA I 4 1 NEWBLK 4
D.AA I 4 1 PPCNT 4
D.AA I a L PPFPL a
D.AA I 4 1 PPINP 4
D.AA I 4 1 PPLIST a
D.AA I 4 1 PPUOL 4
D.AA I 4 1 PUT a
D.AA I 4 1 RDBLK 4
D.AB T 4 1 PPINP a
D.AB I 4 1 PPLIST 4
D.BA I 4 1 MODCNT 4
D.BA I 4 1 PPCNT a
D.BA I 4 1 PPFPL 4
D.BA I 4 1 PPLIST 4
D.BA I 4 1 PPUOL 4
DPL R 4 1 PPCNT 4
EOF I 4 1 REED 4
FBUF R 4 4 PPINP 16
FCDAT I 2 32768 PRIAFL 65536
FCSEQ I 2 4096 PRIAFL 8192
FDAT R 4 1 PPCNT a
FILNAM R 8 1 PPINP 3
FLAGS I 4 832 PRIAML 3328
FNAM R 8 1 ROBLK 8
ENM R 8 3 RDBLK 24
FORI R 4 1 PPINP 4
FORJ R 4 1 PPINP 4
FPLNAM R 8 1 WRTFPL 3
FPRI I 4 4096 CPSTM 16384
HIADR I 2 1 PPFPL 2
I I 4 1 MODCNT 4
1 I a 1 NEWBLK 4
I I 4 1 PPCNT 4
1 I 4 1 PPFPL 4
I 14 1 PPINP 4
I I 4 1 PPLIST 4
I I 4 1 PPMSG 4
1 I 4 1 PPSORT 4
I I a 1 PPUOL 4
1 I 4 1 PRIPRO 4
I I 4 1 PUT 4
1 T.4_ 1 REED 4
10 I 2 1 MODCNT 2
10 I 2 1 NEWBLK 2
10 I 2 1 PPFPL 2
10 I 2 1 PPINP 2
10 I 2 1 PPLIST 2

196

SYMBOL T

I2
I256
I2BUF
I320
15

I5
IABSAD
IACT
IADR
IARG
IARG
IARG
IARG
IB
IB1
IB2
IB3
IBFAC
IBFAC
IBIT
IBITH
IBUF
IBUQ
IBUO
IBYTE
IC
ICLOS
ICODE
1D
IDAT
IDAT
IDATA
IDBLK
IDTA
IELAP
IERR
IFAC
IFAC
IFD
IFPRI
IHDR
IHEAD
IHIGH
II

I1

II

II

1J

13

IK

HHHl

[R N S

G)HHHHHPHAO\[I)HHHHHHPHHH#'PHHHP

15)]
nN =
N

409

[o el = AR O N S R i ol ol il 8

LOCATI TOTAL®#
MODCNT

PPFPL

PPLIST

PPCNT

NEWBLK

PPINP 1
NEWBLK
PPFPL
PPLIST
SETRD
PRIBLK
RDBLK
PUT
REED
SETFIL
SETRD
PPLIST
NEWBLK
NEWBLK
NEWBLK
PPFPL
PPLIST
PPLIST
PPLIST
PPINP
PPFPL
PPLIST
PPCNT
MODCNT
PPINP
PPINP
PPLIST
PPLIST
PRIBLK
PRIBLK 2112
PPINP
PPCNT
PRIPRO
PRIPRO
PPFPL
PPLIST
PPFPL
CPSTM
PRIBLK
PRIBLK
PPFPL
MODCNT
PPFPL
PPINP
PPLIST
MODCNT
PPLIST
PPINP

NN KSR BRDABERBEREEENNNONNDNDNDN

w
N O

N
(@
o -
DO LAELPLPANOMNDOD

NN BB BB

®

H
N 0 =
s s N

P AL DR A LN

Table C-5: Variable List
for PRIPRO
(Sheet 2 of 7)

197

r------------------I-IIIIIIIIIIIII------f

w

PREPEPNPEPRPRAELODNRPPRPEP

409

[O N S R N S I i S I 5 B el o ol i ol el ool ol el

LOCATI TOTAL®

- - - - -

NEWBLK 4
PPLIST 4
PPFPL 2
RDBLK 12
PPMSG 60
PPMSG 60
PPMSG 60
PPMSG 60
PPMSG 60
PPMSG 60
PPMSG 60
PPMSG 60
PPMSG 480
PRIPRO 4
PPFPL 2
PPINP 4
PPLIST 2
PRIBLK 4
MODCNT 16
PPUOL 64
RDBLK 12
MODCNT 4
PPINP 16
PPFPL 2
PPINP 4
PPLIST 2
PPCNT 8
PPUOL 4
PPCNT 4
PPFPL 2
PPINP 4
PPLIST 2
NEWBLK 4
PPFPL 4
PUT 4
REED 4
SETRD 4
PPFPL 4
PPLIST 4
PPFPL 2
PPLIST 2
BFRI 20
BFRO 20
PUT 4
REED 4
SETRD 4
PPCNT 4
PPINP 8192
SETRD 4
PRIPRO 9
RDBLK 4
PPCNT 4
PRIPRO 4

Table C~5: Variable List
for PRIPRO
(Sheet 3 of 7)

198

P e

PR BB PR RRREBPRPRPPRRERRPREPPLPRREPRPRERERPRPEREREOUR PR L o e 1V R el I 78 B o e

LOCATI TOTAL#

REED

SETFIL

SETRD

PRIPRO 1
PPCNT

PPLIST
PRIPRO 1
PPFPL
PPINP
PPFPL
PPLIST
PPINP
PPINP
PUT
REED
PPCNT
NEWBLK
PPINP
RDBLK
BFRI
BFRO
MODCNT
PPLIST
PRIBLK
MODCNT
PPCNT
PPINP
PPLIST
PPSORT
RDBLK
PUT
REED
PUT
REED
SETRD
MODCNT
PPSORT
PPUCL
RDBLK
PPFPL
PPLIST
PPUOL
RDBLK
PPSART
MODCNT
REED
PUT
REED
PPCNT
PPSORT
PUT
REED

NNBBENRAN RS LS

NN

.b.h-&-ﬁ-ﬁ-b-&.b-h.bvh.bubnb-h.b-b.&vb.b:b.bnb.b»b.b»b.b»bvﬁvboo.b-h-h#.&cb.b-&

Table C-5: Variable List
for PRIPRO
(Sheet 4 of 7)

199

LOADRP
LoBJ
LOHI
LPCT
LPCT
LRANG
LUAFL
LUAFL
LUBLK
LUERR
Luo
LUSW
LUSW
LUSW
LUSW
LUSW
LUSW
LUSW
M

M

M

M2
MACT
MHDR
MINRNG
MJ
MN1
MN1
MNUM
MOBJ
MODC
MODK
MODNUM
MOL
MOVL
MP
MPRN

- -

LOCATI TOTAL#
PUT

PPSORT

PPUOL

PPFPL

PPLIST
PPSQORT

PPFPL

PPFPL
PPLIST

RDBLK 1
PUT

REED

RDBLK
RDBLK
PPLIST
PPFPL
PPFPL
PPLIST
PRISRT 16
PUT

REED
PPLIST
PPINP
PRIPRQ
RDBLK
PPMSG
PPLIST
MODCNT
NEWBLK
PPFPL
PPINP
PPLIST
PPUOL
PRIPRO
PPINP
PPUOL

PUT

PPSORT
PPCNT 6
PPCNT

PPINP

PPLIST

PPFPL

PPLIST
NEWBLK
PRIMOC 512
MODCNT 32
PRIMOC 32
PRIANML les4d
PPLIST 4
PRILST 8192
MODCNT 64
PPFPL 16

L I S ON S W S

W
©
BN LB RPN BEDRABNANNLELRLNNN

NN DS B B b DD DB DR D SRR

Table C-5: Variable List
for PRIPRO
(Sheet 5 of 7)

200

NF

NF
NFTY
NGR
NGRP
NG3
NMO
NMOD
NN

NO
NOBJ
NOM
NOM
NOSEC
NOSSEC
NOWRD
NPAIR
NPL
NRANG
NRASP
NRATF
NRSP
NRTF
NUM
NUMB
NUMBR
NUMOBJ
NUQ
NUO
NUQoC
NUGG
NWORD
RSLTN
SECDIR
SECUG
SsSw
TBLK
TBLK
TBLK
TEMP
UGADR
UGSCF
UORL
UORL
UCRL
VEC
vVPSUM

- - -

o
W

LOCATI TOTAL#

PRIBLK
PUT
MODCNT
PPUOL
PRIAFL
PRIAML
PPFPL
PPLIST
PPINP
PPFPL
PRILST
PPUGL
PRIMOC
PRILST
PPUOL
RDBLK
MODCNT
PPLIST
RDBLK
PRIPRO
PRIPRO
RDBLK
PPCNT
PPCNT
PPFPL
PRIBLR
PRIBLK
PPCNT
PPCNT
WRTFPL
PRIMOC
PPUCL
MODCNT
PPLIST
PPUOL
PRIUOL
PRIUOL
RDBLK
SETRD
RDBLK
RDBLK
SSWTCH
PUT
REED
SETRD
PPINP
PRIUF
PRIUF
PPFPL
PPLIST
PRIUF
PRIVP
PPCNT

L

166

o&:h.bw.l’:-rb.&v#&p&.bh.&-bvbnh&&hm&#&&##&o&&.&#o&h

128
256

2048
3936

Table C-5: Variable
for PRIPRO
(Sheet 6 of 7)

201

List

SYMBOL T S DIMN# LOCATI TOTAL#

- — - - - - - - - - - - -

VPV R 4 3 PRIBLK
XSCALE R 4 1 PRIBLK

TOTAL
SIZE 1,170
DIMN €9,682
TOTAL 157,242

Table C-5: Variable List
for PRIPRO
(Sheet 7 of 7)

202

AZINM
BLKANMT
BLNFLG
BUFF
BUFF
CLC
COLOR
CsI

cVv

Ccw
D.AA
D.AA
D.AB
D.BA
D.BB
DF1B
DF1T
DF2
DFP
DIR
EDGFLG
ELEV
EOQF
ERRMSG
F1IRFLG
FADFLG
FILE
FOPG
FOPS
FORI
FORI
FORJ
FORK
FORKSS
FR1EDB
FVPG
FVPS
FWPG
FWPS
GND
HAZG
HAZS
HFQV

I

I

I

I

1

IO
IABSAD
IARG

LOCATI TOTAL

- - - - - -

FRM1 4
DRCTRY 32
OPTNS 4
BFRI 1280
BFRO 1280
FR1D 72
TABLS 3072
FR1D i2
FRM1 4
FRM1 4
DRCTRY 4
PUT 4
DRCTRY 4
DRCTRY 4
DRCTRY 4
FADE 4
FADE 4
FADE <%
CPFM 4
DRCT 3372
OPTNS 4
FRM1 4
REED 4
MISC 4
OPTNS 4
CPTNS 4
SCGEN 40
VPFN 4
VPFM 4
INPUT 4
SCGEN 4
INPUT 4
INPUT 4
INPUT 4
FR1D 9216
VPEFHM 4
VPFM 4
VPFM 4
VPFM 4
VPFM 6
VPENM 6
VPEM 6
FRM1 4
DRCTRY 4
INPUT 4
PUT 4
REED 4
SCGEN 4q
FRM1 4
SETRD 4
DRCTRY 4

Table C-6: Variable List
for SCGEN
(Sheet 1 of 5)

203

- -

ICOSYS
1CSI
IEF
IELAP
IFOGC
IFXLOD
IGNDC
IHAZC
ILOD
IMIN
INBN
IPROC
IPROC
IPROC
IPTR
IRC
IREC
IREC
IRFC
IRFC
IRFC
IRN
IRX
ISCR
ISEC
ISKYC
ISOPT1
1SOPT2
ISTAT
ISTAT
ISTAT
ISTAT
ISTAT
ISTIN
IT
ITIN
1UpP
1UP
IX

IX,

J

J

Jo

J1

J1
JARG
JARG

HHHI

S DIMN

!
|
]
1

WWE WE R e e e

307

-&.&J\A-&&#&#-&AA#A'&&&.D&A&AJ&A»&.&&J&#hh##&vﬁ&hh##h&#k#-&##&&&&&t

PR PP PRPPRPOUPRPRPRPRPORPRPRPPRPPOREPRNNPRPRRRE,P,PAORPERRRRPRE

LOCATI TOTAL

- - - - -~ - -

REED
SETFIL
SETRD
DRCTRY
OPTNS
MISC
DRCTRY
MISC
SCGEN
CPFM
OPTNS
CPFM
CPFHM
DRCTRY
SCGEN
DRCTRY
PUT
REED
SETRD
DRCTRY
FR1D
BFRI
BFRC
PUT
REED
SETRD
DRCTRY
SETRD
INPUT
SCGEN
CPFM
INPUT
INPUT
PUT
REED
SCGEN
SETFIL
SETRD
SCGEN 1
DRCTRY
SCGEN 1
PUT
REED
BFRI
BFRO
DRCTRY
INPUT
FRM1
pPuT
REED
PUT
REED

[

L
BNNBN BB B R B E DB DB

N

'.—l
N
[N
[vel
ND OB RBEROO R DD DA BR

-

PLEALALLRAOCOABNBNB DA LD DD

Table C-6: Variable List
for SCGEN
(Sheet 2 of 5)

204

SYMBOL

K1
KARG
KD
KDPTR
KGND
KI

KIJ

KJ
KLOD
KLTAB
KRASH
KS
KSKY
KSS
KUVW

L

LB
LEFT
LEFT
LN

Lo
LOCFLG
LODCRS
LODFIN
LODMOD
LPCT
LPCT
LSP
LST
LTPARM
LUCLT
LUCHN
LUENV
LUHDR
LUVPF
M

M

HH HHHHHDHHHHEHRAHCHHHHHHTIHODORDHYO0D D HHHHHAHREHHHAHAHES R R HHA]
DPADLDLDLDADBDRBREABINNDED A ELELEDDRABRBANERDRPED LR DR BB BB BB R BB B BERDD

L ol = = N N S T e

281

PR R R RERRPRPRORRPRPPRPRPRPRREEPPRPPOAPEPRPPEPEPOAREBREO®RPEHP S

LOCATI TOTAL
SETRD
DRCTRY
DRCTRY
DRCTRY
DRCTRY
JWIN
JWIN
DRCTRY
REED
MISC
PUT
REED
DRCTRY
INPUT
PUT
REED
DRCTRY
PUT
DRCTRY
DRCTRY
VPFM
FRM1
FIXDT
FRM1
FIXDT
FIXDT
VPEFM
FRM1
VPFM
INPUT
FIXDT 2
DRCTRY
DRCTRY

PUT

REED

MISC

MISC

OPTNS
DRCTRY
DRCTRY
OPTNS

PUT

REED

MISC

MISC

TABLS 1126
INPUT
CMNOUT
DRCTRY
INPUT

INPUT
DRCTRY

PUT

N N

w

H
A B HLOL DN BB DB DD EEDRD

o))

BB L DD DD DLEDRLEEEBABNNARBR DA DLPLERARPLLAEN

Table C-6: Variable List
for SCGEN
(Sheet 3 of 5)

205

SYMBOL
MAXRYM"™
MINRNG
MK
MMAT
MMC
MMPOS
N

N

NE
NEWFLG
NFSUM
NL
NOEDB
NQSEC
NOSSEC
NVP
OFF
PTLFLG
RB

RBH
REGCT
RL

RP

RPC

RR
RSLTN
RT

SCR
SKY

SN

SSW

SV
TBLK
TBLK
TBLK
TCSI
TEXFLG
TWO1l6
TXTAB
UVsusS
uvw
VFOV
VP

VPN
WND
WNDFLG
X

2C
ZMIN

VOO DDV HIDICHHHAH DO DHIODDHIDOD DD HHIOCHHHHHHHROCHANTCOD330X -

S DIMN

NN
-0

W

WNPOAFRWWORPRLOPLPPOORPEREP PP e

307

W

N
g

ﬁ&&héh@####-&&l\)&-ﬁ.ﬁ-&-ﬂ-AN#A.&-&JA.b-b.bbo&.b.&.b»hh:b.&o&k.&»&»b.bJi.kot“.&.bI
PR PPLOOWPVOWLPPOOOOLUWNW

LOCATI TOTAL

MISC 32
MISC 32
FIXDT 4
MMDAT 84
MMDAT 84
OPTNS 4
DRCTRY 4
PUT 4
FIXDT 4
DRCTRY 4
FIXDT 4
FIXDT 4
FR1D 4
SCGEN 4
SCGEN 4
FIXDT 36
DRCTRY 32
CPTNS 4
FRM1 4
DRCTRY 120
FR1D 4
FRM1 4
FIXDT 12
FIXDT 12
FRM1 4
SETRD 24
FRM1 4
INPUT 12288
VPEM 6
FRM1 12
SSWTCH 128
FIXDT 12
PUT 20
REED 20
SETRD 20
DRCTRY 512
OPTNS 4
INPUT 4
MISC 12
FIXDT 36
FRM1 36
FRM1 4
FRM1 24
FRM1 36
FRM1 12
JWIN 4
INPUT 4
FADE 4
FADE 4

Table C-6: Variable List
for SCGEN
(Sheet 4 of 5)

206

(/—

TOTAL Table C-6: Variable List
---------------------- for SCGEN
SIZE 820 (Sheet 5 of 5)
DIMN 15,098
TOTAL 5€,498
207

Appendix D

Collected Data on Operations

208

Appendix D

The data in this appendix represents the data collected
regarding the number and types of operations performed on
each type of variable., It is divided into six sections as

follows:

Section
Section
Section
Section
Section
Section

(AR IF S GV R

- 2 Byte Integer Operations
- 4 Byte Integer Operations
- Logical Operations

- 4 Byte Real Operations

- 8 Byte Real Operations

- Other Operations

The column headings for the first five sections are
described below.

MODULE

INTERNAL

A# thru R#

name of the subroutine or program containing
the operations

name of the internal subroutine contained
within the module

number of operations of each type as follows:
+

*

/

%* %

Arithmetic IF
Logical IF
ELSEIF
.EQ.

.NE.

.GT.

.LT.

.GE.

.LE.

. AND.

.OR.

.NOT,

VOVO2ICXXRgHTTQmEnoOw>

209

The column headings for the sixth section are described
telow.

MODULE name of the subroutine or program containing
the operations

INTERNAL name of the internal subroutine contained
within the module

A# thru T# number of operations of each type as follows:
GOTO

GOTO ASSIGN
Computed GOTO
DO

DO FOR

DO FOREVER

DO UNTIL

DO WHILE

LEAVE
Procedure Call
Subroutine CALL
READ

WRITE

FORMAT

SELECT CASE
CASE

ASSIGN

REWIND

RETURN

STOP

HNJVODOZ2ECNHIQYDmOOQWX

210

Appendix D
Collected Data on Operations

Section 1 - 2 Byte Integer Operations

211

MODULE INTERNAL AN B C# D% EB FR GO n# I8 Jo x% o% n¢ Né Od P8 GF R4

—————

AREAL
ARER2
AREA3
QRERS
RRECAL
QRE0D
CmNOUT
0L
COLOR

COLOR ALAYERING

CPELND
{PFADE
CRLITE
CSDEF
CX¥Ap
DECJDE
DLCAL
ORCTRY
Z0GCAL
LE6EN
EDGORD
Z2603D
EDWwlLT
TIRRPT
=ACCom
SACQUT
FACPRS
FADChP
B=t]
ST
T3amsd
FRAMEZ
T3am=3
~DRGUT
INITE
INIT3
INDUT
NGLAT
6D
LR2
L2
LSTOUT
»DCLARR
WHFAD
»ODCLR
YGDONT
%0DFY2
MODIFY
PODRD
AODSET
mipste
*ODULA
MOVE

FROVT

MODSELECT

—— — —— . m— —— —— — —— —— —— — ——— —— —— S m—

4 2 6 7
7 12 7 6 4 i
2 6 16 22
13 3 9 ¢
3 a8 7
4 & 4 1 ¢ 1 !
1 3 7 13 2 2 2 @
1
i 6
! 4
3 8 2 6
& ! 3 1 i
127 16 at 138 93 7 &5 37 2= kS S A
7 :
¢ { 2 i
4 5 3 3
2
3
12 3 2 2 i
€
2 3 1
| { !
g 4
4
2
! i
3 45 2 2 18 6 2 b4
e it 12
2
3 2 73 3 1 31 6 1 1

212

MODULE INTEANAL A% B Ck D& E# F# Gk H# I8 J# KB Ls " N8 On P4 G¥ R

— —— w—— s - —— —————
—— — — —— — —— —— ——— o—— m——— —

MLT
NEWBLK
NEWED
NEWPL
NSEDGR
NGOUT
NSRSLY
NGRSLY
ORDER
QVERID
OARSEL
PRTPRO
PONT
FPFRL
BoINP
FPLIST
PEMSE
FOSORT
FPUOL
=RAPLU
PRARER
SRAGAD
ARCLA
53Dwp
~RzDER
FREEFS
FRELCD
PREFD
JRESZL
PRFEnY
OQINIT
PRIFAD
SRIRSV
PANEFS
~RNXTO
FROUT
PRSTOR
PRTAU
SRATPLY
PRVIS
PICAL
PTCLR2
PTLGEN
PTLSIT
AT
pyT2
PUTCLR
PUTSET
PUTST2
fAmOUT
RAMSET
RDELA
REED

PRINTEDGE

CLEARTRAN

-

1

13

[P ol

[ous
[T I o 4

SR

G

[}
n i -

e 47

13 18

13

._.
W g~

[V (V)

cd
15
14

el

19

—

-
- On

n

12

e
& L1 U

[

o
[

w

—
pos

n
(4 B p VI ol 1

[25 I g N

o
-~

AN
o —= —
b

Gl b~

213

MODULE INTERNAL A% B¥ C# D# E# Fé G# M IB J# «K8 L% M8 N» O P¥ O# Ré

REED2
ROTMAT
ASTPED
SAVELT
SCGEN
SETFIL
SETRD
SETRDR
SINGS
SINGS MCOSELECT
STPED
TRLT
TB2
TB2 MODSELECT
THULT
TRANS
TSBNST
TSBENG
TSDEN
TSER
TSzDA
TSEDER
TSERCY
TSESP
"SINIT
TSLOD
TSLODS
TSmuX
“SPINC
TSSHAD
“STX¥D
TSTXMD SETLPLOD
TSTXMD SETUPMAP
TTML
TVeC
UPDATE
YEC
vIDOUT
VIDPRO
VPAINC
YPCFC
VPFADE
VPIFLD
VPILN
YELNDL
YPLIC
VPP
VeSIwp
VRTEX
VTP
WINDOW
WNDDWP
WRTFPL

ro

—

—

n

— 0 = v

18

2
-

i3
4

Ntﬂgbl

-

"‘K;"W*“U‘

o
— W

e L9 o

—

~ D D LSOy

— e - O

[V o CR 9]

(%)

i

[5, BN VY £ U]

—

’—

LATIN XY

e

- - ——— — . E— —— —— ——— — ——— ———— VA— ———— —— —

214

Appendix D
Collected Data on Operations

Section 2 - 4 Byte Integer Operations

215

WCDULE INTcRNAL A4 B¢ C# Do

P

ARER!

AREA2

AREA3

RAER4

ARECAL

RREMOD

CxNOLT

caL

CoLOR

COLOR ALAYERING 1

FBUND

CPFRDE

CALITE {

CSDEF

Cxmap 3

DECODE 9

DCAL 2
4
é
4

DRCTRY !
ZDECAL 1
EDGGEN 1
ZDGORD

EDBQRD FACVT 1
EDWOUT

SARRPT

~RCCON 5
FRCQUT 3
FACFRO 1)
“AlCwe

S

FHaD 3
~RAME! 19
FRAMER c8
FRAMEI 3
HDROUT 2
iNIT2

INIT3 {
INPUT 24
LNGLAT

0D 7
LR2
LR
LSTQUT
“DCLR2
MMERD
MOOCLR
MODONT
MODFY2
MODIFY
MODRD
*0DSET
W0psT2
¥CDULA
NOVE

MODSELECT

b pes

[RS I FOR VAR -~ -~ A

L v n

(%]

—— ——— W- —— ——

-

[T

—

> o =)
cnE &SRB P w

¢ F& GF e

15

[FSRN a VI« QRNV N

n

(V- BN VRN s VR R < A e L g 48]

o o

O~

— o

ne

_—

o -

—

U — = = OO

P

w o e

Lt fu

o

o o WUn

—

o= = QO 0 L~

[FNIN VI (VA gl

— e - U M

b

—

[

v h —

n

I8 KE v W o 08 P G R

e —— —— —— —— ——— A S O S San aeeah . ———

—

— e s g b

216

MODULE INTERNAL A% B¥ Ce D% EB F# G¥ He

NEWED

NEWPL

NSEDGR

NSOUT

NSRSLYV

NGRSLY PRINTZDGE
QORDER

QVERID

PARSEL

PATPRO

PPONT

SOFPL

SPIND

PLIST

PPMSE

FPSORT

PRUOL

SRAPLU

PRARER

JRAUPD

PRCLR

FRIMP

PREDGR 2
PREEFS

PRELOD 1
#REPD

PRESEL

PRFBKU

PRINIT 1

—
PO « L B N ¥ I 4 B

— -—

Oy OV »r L W

n +& n

2R17R0 4

PRIRSV

CENEFS

PRNXTO

PR0UT 14
PRSTOR

FRTPLY

PRTPLU CLERRTRAN
FRVIS

PTCAL

pTOLR2

PTLBEN

pTLSIT

PUT

T

PUTCLR

PUTSET

puTST2

AMOUT

RAMSET 2
ROBLK

REED 1

(3]

O O — M

N — Oh oo

no

—

- o

-

GRFEurresnBaalil

3y
X

P pes

N8 v~

= o o
w

A
&V~ & onfu

wn
n o

— -
P Y« B

g2 Konmnn 00

gUlembl

&

—
[ZST < - LR 7V I L V]

n

—
— e

>

w -
N Ut Lt ot O eV —n

h oy n

[# J6 Ke L% M& K& O PR O¥ R

——— ———————— —r— —— — —— —— —— ——— ——— —t—— ———— T ——— —— e —— — ——— ——

— o 5 = e — N =

[£Y

—
(X

[%]

—
o n - -~

W o—- nwm

i

12

—

— e p—

— O Ny - e

[T}

o

[

217

MODULE INTERNAL A% D% C# D% E¥ F# GB HE T8 J8 WK% L% M¢ N& Q8 P (G RS

REEDR 11
ROT™AT

RSTPED 1
SAVELT 2
SCEN 4
SETFIL

ZTRD g
SETRDR 3
SINGS

SINGS MODSELECT
STPED 3
STRLY 8
B2

TB2 MODSELECT
LT

TRANS

TEONST

TSBSND

TSDBN

TSER

TSEDA

TSEDGR

TSEMQV

TSESP

TSINIT

TSLOD

TSLODS

ToMUX

TSPING

TSSHAD

TETXMD 12
TSTYMD SETUPLOD 4
TSTYMD SETLRPWRP 4
TTML

TVEC

LPDATE

VEC

viDout

v1DPRO 8
VPAINC 3
WCFC 1
VPFADE
WIFLD
VWILN
VOLNDL
VRLTC
VPmLF
vPSINg
v TEX
T
wiNDOM
WNDDWP 5
WATFPL 1

—
N & L) Ly

—

n oo -

-y

v ne — b G —

& = [y v

—— S

n »-

[y

[£Y

— e s~ O

[

= o ru

n

WL o— D e

-
Ny ru R
[Z8 B S AL

136

[N W) I = o B g N

.] r L.
- o L = O SO

n
&

-

)

s
S) U W

- R

o o~

(V]

— e e PO s

>

.-
—

»ea

oy U1~

& R L2 L O

ar

(%3

o oo

o N e~

oy O+

& & -

n

— s = O

ro pa -

Ll 7Y I » 2}

(&)

)

-

P

(%]

mn

—— —— ——— p— — ————— —— —— —— — — Soa—t et Emees wmven v e t—e——

>

n

218

Appendix D
Collected Data on Operations

Section 3 ~ Logical Operations

219

YODULE INTERNAL A8 5% C# DB 4 FH GB I8 J8 K8 Le Wt M O# P9 0% Re
ARERY

AREAR

AREA3

ARER4

ARECAL

AREMCD

ZINGUT

R

COLOR RLAYERING 2
COLOR

CPBLND

CPFRDE 1 t
CALITE

CSDEF

Cxrap

DECCOE

DLCAL 1
DRCTRY e
£D6CAL 3
EDGBEN

ZDGORD 1
ZDGORD FACVT

DWOLT

ERRRPT

FACCOM

“RCOUT 5 6 3 il
FACPRO 15 a3 1 3
caDCw

FEP

F™0D

TRAMEL

FRAMES 3
FRAMES 2
HOROLT

INIT2

INIT3 2 4 1
INPT 11 2

LNGLAT
L3D
LR 3
LR2 MODSELECT

LSTouT

MDOLRR

M AD

WODCLR

YODCNT 2
MODFY2

“0DIFY

®ODRD

w0DSET

mopsTe

m0DULA

mOvE

— e =

[TYR R O & 75} o
[—

(¥}

o

—_
LN WD = L)
—

—

—

h

220

MODULE INTEANAL A% B® C# D# ER 7% OF b I8 J% <% L% ms N# O¢ P% O¢ 8

MLT

NEWBLX

NEWED 4
NEWPL

NSEDER

NSQUT

NSRSLV

NSRSLV PRINTEDGE 1 !
ORDER

GVERID
“ARSEL
PATPRD
HOCNT

PRFPRL

PPINP

PRLIST
Pomse

PPSORT
vEudl

PRAPLU
~RAREA
PRAUPD
PRCLR

bW

~REDGR
PREEFS
#RELAD
PREPD

PRESEL
FRFEKU
SRINIT
FRIPRO
~RIRSV
PRNEFS
£ANXTO
PROUT 1 1
PRSTOR

PRTPLU

PRTPLY CLEARTRAN

PRVIS {

ATCAL 1

PICLR2

PTLGEN 1

PTLSIT i

puT

PuT

PUTCLR

PUTSET

AITST2

RAMOUT

RANSET

DBLK

REED

(& IS o (L% o 0 N
no
.

U v e PO

[ZS N PN X
e

221

wODULE INTERNAL RS B¥ C¥ D$ E¥ F# G ri# I8 JB K8 L% W% N& 08 P% Q% RS

REEDR

ROTAT

ASTPED

SAVELT

SCGEN

SETFIL

SETRD

SETRDR

SINGS 68 68
SINGS MODSELECT

577D !
STRLT L
T8 =)
TB2 MODSELECT

™LT

TRANG

TSBNST

TSESNG

“SOBN

7SER

TSEDR

“3ED6R i
TSEMOV

“5ESP

“SINGT

“SL3D

T3L0DS

TSMUX

TSPINC

~S5rAD

“STXMD

"§TXMD SETLRLED

TSTAMD SETLPMAP

T

TVEC

WPDRTE

veC

vIDQuT

VIDPRO 3
VPAINC

VPCFC

VPFADE

WIFLD

VPILN

VPLNDL

VRLTC

VomF

VoS INP

VPTEX

VTP 9 7
WINDOW

NDDWP

WRTFRL { 222

Appendix D
Collected Data on Operations

Section 4 - 4 Byte Real Operations

223

MODULE INTERNAL A% B# Tw Ds E¥ F¥ G¥ i I8 J% «8 Ls M8 N¢ 08 o8 Gk Ré

—— ——— — ——— —— ——— ——— — A —— —— —— oty —— —— e —

RREAL
9RESS
RREAZ
SRERS
ARECAL
SREeCD
T8 T
oL
COLOR
OLOR
CPBLND
CPFADE
LT
CSDeF
We e
DECODE
2l
DRCTRY
ZIGCAL
EDEGEN
=JGCRD
£D60RD
ZDwllT
cRRRPT
=ACCCH
FACGLT
FCPR0
FADCMP
--_U
ath)
~340E1
TRAmEZ
FARYE3
=DREUT
INIT2
INIT3
ineuT
LAGLAT
Lib
LR2
A2
LSTauT
mDCLR2
YoEAD
MODCLR
MODCNT
¥ODFY2
»ODIFY
MGORD
naDSET
MoDST2
TODULA
MOVE

ALAYERING

FRCVT

MODSELECT

3
113
8 1
4 14
6 12
8

ie

o
(L8

ne

11 12

42
13
4

W - o O D

i2
ie
18
16 4 3 {
11 3 2 2 1
7
1 2 2 11
16 5 1 4
3
1
25 3 11 14
ag 7 PR S SR S | ¢ 1
3 1 1
1
1
1 6
1 i 1
33 6 6
145 77 4 3 25 &3 33 & 43 8
P \
[l
1 18
2
7
33 11 td
e 19
38 3 3 6 1 6
1 1

224

MODULE INTERNAL @# B# C% D& E# Fw G

MULT
NEWBLA
NEWED
NEWPL
NSEDGR
ANSQLT
NSRSLY
NSRSLY PRINTEDEC
JRDER
OVERID
~ARSEL
PATPRO
FICNT
PPFPL
20 NP
PRLIST
OrmSs
#PSORT
~PU0L
~RAPLY
FRAREA
SRAGFD
PACLR
FRDeP
S32DGR
FSEEFS
250, 0D
PREPD
23S
PRFBRU
=80T
231FR0
FRIREV
FANEFS
PANXTO
FROUT
PRSTOR
PRTOLY
PRTALU CLEARTRAN
PRVIS
PTCAL
PTCLR2
ATLBEN
PTLSIT
AT
T
PUTCLR
PUTSET
HUTSTR
RAmOUT
RAMSET
RDBLK
REZD

12

[)

-

Ut 2O -

s

h

[

28

(AN 9]

£ N e

o o

[£5

W OIR I8 K8 LS MR N8 0% Ps 0% Re

n

225

MODULE INTERNAL A% B% C# D% e % G =% s Je K6 L8 Mt N# (08 P¥ ¥ RS

REEDR

0THAT 3 319 18

ASTPED 2

SAVELT 6 2 2
SCGEN

SETFIL

SETRD

SETRDE

SINGS

SINGS MODSELECT
STPED

STALT e
B2

TB2 MODSELECT
AT 2
TRANS 1
TE3NST
~oESND
TSDBN
TSEA
TSEDA
T3Z03R &

TSEMOV i 1 {
TSESP i2 5 & 13

TSINIT :

“SLGD ‘
TSLEDS

TSMUX

TSPINC

“SSHAD

TSTAMD

T5TXMD SETLPLOD
TSTXMD SETURMAP
TTMUL 1)\
TVEC ‘ i
UPDRTE

Vel 1 1
VIDQUT

vIDPRO 2 2
VPAINC 2
WCFC 6 19
VPFADE 4 7
VBIFLD (
WILN
VPLNDL I
WLTC

VPMLF 1 1 4
VPSING
VPTEX
vie 35 18 69 13 13
WINDOW 4

wNDDMP

WRTFPL

17

s
P
o
[N
—
[
-

[FY RV« B #N]
—
—
.-
—

oy UL
oo

[N T V)
N QO e

L o

—
G e
.- &
— fu
.—
— (g%
[7N [72X}
[#N] ~
-

—
[P
[a WO ¢ BTSN o KRN ST R L
(4%

3
S
&
1

[4V]
o

n (o

a ~4
LW WO o U ne n

n
—
-

n

31 1 2 9 12 4 2 i 2

I &

226

Appendix D
Collected Data on Operations

Section 5 - 8 Byte Real Operations

227

e

WODULE INTEANAL AE B4 C# D S8 7R 58 -8 18 J# KE L3 M ¢ 08 P% 08 R

- S —— S—— ——— —— — —a—tn e Ve aeene s e ——
- A . —ewen emae e

AREAL

ARERZ

AREA3

ARERS

ARECAL

AREMCD

CenGuT

CoL

CALER

COLCR SLAYZRING

TFELND

SR

CrLlTE

L3DEF

XN

DECODE

OLCRAL

JRLTRY

ZDBCAL

ZDSGEN

ELGORD

Z550R) FRCYT

zowiuT

ZRRAPT

SRCICw

SACtLy

=AlFRT

0o { 4 1 3 2 i
fep
=D
“RAMEL :
FRAYZZ

[
[N
r

LR2

LR2 MODSELECT
LSTOUT

MOCLR2

MWFAD 3 3 7 o
MODCLR

MODCNT

MODFY2

MODIFY

MODRD

MODSET

MaDsT2

MODULA

MOVE

o

228

MODULE INTERNAL Q% 3# C# D& E# F# G HE I8 J# K8 (% ™ s8¢ 08 P8 0¥ RS
LT
NEWBLK
NEWED
NEWPL
NSEDGR
NSQUT
NSRSLY
NSRSLY PRINTZISZ
CRDER

CVERID

PRASEL

24770

FaCNT

I

SOIAR

-5.i8T

PmSG

FFSORT

~PUCL

F ALY

PRAREA

PRAGFD

#RCLR

oRDMP

PREDGR

FREZFS

FRELGD

#RE70

~AESZL

-

. — — — — — ——— —— — ——— — —— A ——— Ep— — — e o—

cqey o=
SN

*RIRSV

~ANEFS

PRNXTO

2R0UT

PRSTOR

PRTPLU

PRTPLL CLEARTRAN
PRVIS

PTCAL

pTCLR2

PTLGEN

2TLSIT

PLT

T2

SuTILR

ZuteeT

SJTSTR

IANOUT

RAMSET

RDBLK l

REED 229

e

MODULE INTERNAL A# 5¢ Cs 2% E8 F¥ G¥ Hé I¥ J8 K¥ L% ™ ¢ T2 D3 0% Ré

. eam . w—— — ——— — —— wim meme e e doan S S i aomwem -

wDe

37T

3STPED

SAVELT

SCGEN

SETFIL

SETRD

SETRDR

SINGS

SINGS MODSELECT
STPED

STALT

TB2

T2 MCSELEI"
T™LT

TANS

T5ENST

Efntatl ey

TSPINC
TSSHAD
TSTXMD
"37TX) SETUPLOD
TSTXMD SETUP¥AP
T
TVEC
JFDATE
VEC
viDOUT
VIDPRO
VPAINC
VRCFZ
veeans
VPIFLD
YOILN
VPLNDL
VPLTC
VPMLF
VPSImP
VPTEX
VTP
WINDOW
WNDDYP

WRTFPL 230

Appendix D
Collected Data on Operations

Section 6 - Other Operations

231

WDULE INTERNAL P= =2 I [
AREAL 3

2Q€r2 16

=2l 18

ARERA 14

ARECAL 19

AREMOD H

CANQUT

oL 8 K
COLOR

TT.D7 SLAYERING
EENTA

CPFRDE

CALiTE

- a0 12
DECODE 161
LCAL

ORCTRY

EDECAL

EDGGEN : {
£D60RD

EDGORD FACVT

W0l

LR

[o - W [N 1}
—

..
[ACEN AVER g V)

FACOLT
FACPA0
cADCHP
7P 53
3

gy
FRAmE : 18
“IAmE3 1 !
HDROUT
INIT2
T3
T
LNGLA™
L0D 2
LR2 e
LR2 MODSELECT
LsTOUT
“OCLR2
cnp 1
MODCLA
MODCNT 5
MODFY2
MODIFY s
*CORD
~ODSET
»0DE™2
oD 2%
MOVE 2

[7))
&

~4

no

NS e

=

Té
P

3 OKe s ome NG OW

o 3

]

4 0S4 TH

m—rm mEE m—— —— —— . —— e ——— — - - -t e e —

—

—
[V < VI - o BN X)

(LY

Lanli PN I ZV RN o NP R

oo

Y

63
o)
13

1€
24

19

()

4w

P A

[s VI SN |

e O

ur - e

-

.
[5, Iy Vw ¥

N N @M L N

s

Y e

-

L o S ¥ N

232

“TDULE INTERNAL A% Es

VeOLT

NSRS

ASRBLY TR TIN

GRDER
OVERID
SRARSEL
ZaTRRO
=
FIF
CoIND
PaLIST
=PMSG
=PSORT
SR
PRAREA
ARALFD
PRCLA
FRUMP

RS
a3Tooe
SAELaD
~3EPD

PRESEL

-3FERU

PR

FRIARSV
PANEFS
87D
FCUT
SRETIR
TRl
PRTPLY
PRVIS
PTCAL
pPTCLR2
PTLGEN
oTLSIT
PUT
PuT2
AUTCLR
PUTSET
~.7357e
ReCLT
RAMSET
RDBLK
REED

CLERRTES

o

L.)

w O L b

[PV

(93]

[9 I o VI #X Ry 73

Ttocx GREOHE I8 TN KE

(]

3

[£¥)
— ~ o

..
[1X]

,_.
[o LI “S I ¥

[,

14

[SRV L)

LR ¢ I g%

a: o on

[S L " VI

14

i

S

PR B

wi

-~ ~4

- -

n

v

- mma e A e - ——— e ———

e Ps 08 RS

5% Ts

O

B TN

e o e« oo

e s »

U ose s

£ G

(PO e

[CY RN LI SURN & B

233

YIILLIINTEANAL As B Ok D3 G
REED2 3
ROTHAT
RSTPED
SAVELT

—

(19

SCEEN g
SETRD

£ <02

SiNes Ny

SINGS WODSELECT

ST%D 18 4
STRLT 9 3
=2 13 3

B MODSELELT

T™MULT 3
TRANS 2
T3BNST 23

TIEEND ¢ 4
N 1 o
“Sgh 17 14
T320A 5 3 2
TSENGR S
TSV Ioos
EEL 1 &
TIINDT 3 5
“5uCd 2

“8LsD5 3 1 4

%)

1
Y])
o0
[
T 4
)
o
S L e &)

[Sy
s
.

ETHRD IETLILL
5

TSTYMD SETUEvRS

ol

< '
R 1
2 2
: S

n e o

<
5
—
OB
-
(98]

— o &

-
T
"
>
(RS

SToocz o~ ¥ JR OKE LB Me N9

et e e e e - —— ——— —— o —— — ——— —— —————

8

-

[29 I SN g¥

n rn

—) § e

(£%

— 4=

n

=~

F o g

4

£ M0~

-3

Hoe w

—
=

o

LRI 7 ¥}

(23]

1

— e (U e

(3
[V

8w

—

4
A

R

U e e e

—

]

-3

it Re

Ss T»

[

-

< o

=

e oy

—

o g -

re e U LA O

—

—

234

THIS PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

1a. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

UNLIMITED

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

AFIT/GE/ENG/39D-40

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION

SCHOOL OF ENGINEERING

6b. OFFICE SYNBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION

6c. ADDRESS (City, State, and ZIP Code)

AIR FORCE INSTITUTE OF TECHNOLOGY
WRIGHT PATTERSON AFB OH 45433-6503

7b. ADDRESS (City, State, and ZIP Code)

8a NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL
ORGANIZATION (If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code)

10. SOURCE OF FUNDING NUMBERS

WORK UNIT
ACCESSION NO.

PROGRAM PROJECT
ELEMENT NO. NO.

TASK
NO

11. TITLE (Include Security Classification)

DYNAMIC ARCHITECTURE COMPUTER

12. PERSONAL AUTHOR(S)
PATRICK £ PRICE

13a. TYPE OF REPORT 13b. TIME COVERED

MASTERS THESIS

15. PAGE COUNT
241

14. DATE OF REPORT (Year, Month, Day)

FROM TO 1988 DECEMBER
16. SUPPLEMENTARY NOTATION
17. COSAT!I CODES 18. SUBJECT TERMS (Continue on reverse if necessary and ident.iry by block number)
FIELD GROUP SUB-GROUP COMPUTER
ARCHITECTURE
DYNAMIC

CALCULATIONS WITH A MINIMUM OF HARDWARE.

VERY SMALL LOGICAL VARIABLES.

ITS STRUCTURE TO MATCH THE DEMANDS OF THE PROBLEM CURRENTLY BEING CALCULATED.
IMAGE GENERATION WAS SELECTED AS AN EXAMPLE PROBLEM.
TIME COMPUTER IMAGE GENERATION REQUIRE CALCULATION OF VERY LARGE REAL NUMBERS AS WELL AS
THE RESULTS DEMONSTRATE THAT, IN A BEST CASE ANALYSIS,

A DYNAMIC ARCHITECTURE COMPUTER CAN DEMONSTRATE AN IMPROVEMENT IN PROCESSING SPEED OVER
CONVENTIONAL SINGLE INSTRUCTION, SINGLE DATA COMPUTERS.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

THE PURPOSE OF THIS THESIS WAS TO DESIGN A COMPUTER THAT COULD PROCESS A LARGE VARIETY OF
THIS CONSTRAINT REQUIRES A COMPUTER THAT CAN CHANGE

COMPUTER
THE PROCESSING REQUIREMENTS OF REAL-

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED/UNLIMITED (O Same As reT O orc users | UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22c. OFFICE SYMBOL
e —PAIRICK.E _PRICE (213) 250-8026

DL Form 1473, JUN 86

Previous editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

(JNCLASSIFIED

e ———————

